
Accelerated Tempering Dynamics in
HMC Simulations of Lattice Field

Theory
MPhys Project Report

Jack Frankland

April 13, 2018

Abstract

This report explains how the Hybrid Monte Carlo algorithm can be used to numerically
calculate the properties of the quantum harmonic and anharmonic oscillators, and dis-
cusses the results of a simulation written for this purpose. In the case of the anharmonic
oscillator, there are isolated modes in the probability distribution, and the states in the
simulation can have difficulty tunnelling between the minima in the double well poten-
tial, leading to incorrect estimates. We investigate the effect of introducing a tempering
parameter into the Hybrid Monte Carlo simulation, in order to reduce the effect of the
tunnelling problem. Tempering is shown to be ineffective for the system in question and
we examine why this is the case.

Supervisors: Dr Roger Horsley, Dr Brian Pendleton

Personal statement

Since the main component of my work would be writing a simulation, in preparation for
my MPhys project I spent several weeks during the summer vacation thoroughly learning
the C++ programming language. I choose to use C++ rather than another programming
language due to its speed, which proved to be valuable for any intensive computations I
needed to perform during my project.

Having had no previous experience with Monte Carlo simulations, I spent the first two
weeks of semester one reading introductory articles and exploring the theory behind Markov
chain Monte Carlo algorithms. During this time I also began reading papers explaining
the connection between the path integral formulation of quantum mechanics and statistical
mechanics, and how in this context Monte Carlo methods can be used to compute properties
of the quantum system.

As an initial exercise and preliminary test, the first simulation I wrote used the Metropolis
algorithm rather than Hybrid Monte Carlo (HMC) algorithm to calculate the path integrals
for the harmonic oscillator. Writing the simulation took around two weeks and during this
time I also read articles and papers on the HMC algorithm that I would be using in my
actual simulation. At this point I was able to begin writing the HMC simulation for the
quantum harmonic oscillator. Implementing the HMC algorithm was more complicated than
the Metropolis algorithm, and at the advice of my supervisors I included several tests in my
simulation to check its validity, overall this took two weeks.

Although at this point I had a working simulation, the properties of the system it could
calculate were limited to basic quantities such as position expectation in the ground state.
I therefore spent the next three weeks investigating how more complicated quantities such
as the ground state density function and energy eigenvalues could be computed from the
HMC simulation. As well as reading the theory behind how these quantities are obtained, I
implemented methods within my simulation to actually calculate them, I also learned how
to use the plotting tool Gnuplot to plot and fit data which was very useful for analysing
results. Checking these results against exact theoretical ones in the case of the discrete
quantum harmonic oscillator, enabled me to verify the validity of my calculations in the
simulation.

Since I now had a working HMC simulation for the quantum harmonic oscillator, I spent the
final two weeks of the semester editing my code to include the option of simulation for the
anharmonic oscillator as well; I could reuse most of the methods from the harmonic case.

Over the Christmas vacation period I spent time investigating how in the case of the quantum
harmonic oscillator the discrete theory can still be solved exactly, and re-derived the results
that I had been checking my simulation against. During this time I also read into the effects
on numerical results of correlations between measurements in a Monte Carlo simulation, and
how to take this into account with the error analysis.

During the first week of semester two I investigated the effect of varying well depths and
distances in my anharmonic oscillator simulation, and found example cases when tunnelling

i

became a problem for the system. I then spent the following two weeks reading papers
explaining how tempered dynamics can be incorporated into the HMC algorithm to solve
tunnelling like problems, and implemented methods in my simulation to do this. At this
point I found the tempering to be ineffective in the system, due to the fact it lowered the
acceptance rate without increasing the tunnelling of the system.

I spent the following two weeks taking a break from computational work and looking into
some more of the theory behind HMC. I devised proofs for volume preservation and then
detailed balance for normal HMC, and then modified them for the tempered case.

Returning to my simulation, I spent a further two weeks making edits to my code so I could
observe the effect tempering was having on the proposed update states in the simulation. By
observing the evolution of the Hamiltonian in these cases I was able to identify the reason
why tempered dynamics as applied to our system did not work.

I spent the remainder of the time generating data and plots for both the tempered and
non-tempered simulations and then working these into the report and presentation.

I met with my superiors throughout semesters one and two in weekly hour sessions to discuss
issues and questions, as well as explain and demonstrate results.

Acknowledgments

I wish to extend my deep appreciation and gratitude to Dr. Roger Horsely and Dr. Brian
Pendleton, my MPhys project supervisors, for all their guidance in answering questions as
well as providing feedback, advice, support and encouragement throughout the entire project,
both in our weekly meetings and through electronic communications.

ii

Contents

1 Introduction 1

2 Background 3
2.1 Quantum Mechanics . 3

2.1.1 The Path Integral . 3
2.1.2 Connecting to Statistical Physics . 4

3 Methods 9
3.1 Monte Carlo Methods . 9
3.2 Hybrid Monte Carlo . 11

3.2.1 Hamiltonian Dynamics . 11
3.2.2 Sampling and the Hamiltonian . 14
3.2.3 Steps of the HMC Algorithm . 15

3.3 Data Analysis . 18

4 Results and Discussion 21
4.1 Quantum Oscillators . 21

4.1.1 Quantum Harmonic Oscillator . 22
4.1.2 Quantum Anharmonic Oscillator . 27
4.1.3 Isolated Modes . 30

4.2 Accelerated Dynamics (Tempering) . 38
4.2.1 Tempering in HMC . 38
4.2.2 Volume Preservation Under Tempering Dynamics 39
4.2.3 Tempered Simulation Results . 42
4.2.4 Suggestions for Future Tempering Investigations 47

5 Conclusion 47

Appendices 51

A Quantum Virial Theorem 51

B Derivation of the discrete path integral for quantum harmonic oscillator 52

C Simulation Code 57

iii

1 Introduction

The Hybrid Monte Carlo (HMC) algorithm (also referred to as Hamiltonian Monte Carlo)
was originally developed by Duane, Kennedy, Pendleton and Roweth in [1] for the purposes
of numerical simulation of lattice field theory. HMC is an example of a Markov chain Monte
Carlo (MCMC) method, where states are proposed via a Markov chain in order to produce
samples distributed according to some probability distribution, these samples can then be
used to estimate the expectation value of some function of the samples under the probability
distribution. Although MCMC was original introduced via the Metropolis algorithm in [2],
HMC makes improvements on this method by using Hamiltonian dynamics to propose new
states in the Markov chain. The idea is that we consider the variables of interest as position
and introduce auxiliary momentum variables, which we can use to define a Hamiltonian
and evolve the system in computer time via a leapfrog integration method, to propose new
states. We alternate between drawing the momentum variables from a multivariate Gaussian
distribution, and performing a Metropolis update, where the new state is proposed via the
Hamiltonian dynamics. The advantage of the HMC method is that the proposed state
can have a high probability of acceptance and be distant from the current state, it therefore
avoids the problems of slow state exploration that results from using random-walk proposals,
such as in the original Metropolis algorithm [3]. Although popular amongst the lattice field
theory community, the HMC method has also been used in statistics, e.g. [4], [5] and [6]
for applications such as neural network models. However, our application of HMC will
be to quantum mechanical systems, and in particular the case of quantum harmonic and
anharmonic oscillators.

Standard HMC can have difficulty sampling from the different areas of a probability distri-
bution, if those areas are separated by a region of low probability; we will refer to these areas
as isolated modes of the distribution. An example of this in quantum mechanics is that of
a 1-dimensional double well potential, where the probability of finding a particle in either
well is high, whilst finding it in the region between the wells is low. If we are interested in
generating samples for say the position of the particle using the HMC algorithm, then for
a deep enough well there will be an asymmetry in the number of samples recorded in each
well. This is due to the energy cost associated with moving between the wells, and so the
Hamiltonian dynamics in the HMC simulation will tend to propose an update state in the
well the current state is in, leading to the asymmetry in the recorded samples. The aim of
this project is to write an HMC simulation for first the quantum harmonic oscillator, then
the quantum anharmonic oscillator, and introduce a tempering parameter as proposed in
[3] and [7] into the dynamics to investigate whether this increases the frequency at which
samples move between the two wells in the anharmonic case. In terms of our simulation, the
benefit of successful tempering would be more accurate estimations of observed quantities,
such as position expectation and ground state density functions. However, in terms of a
broader goal, successful tempering results in HMC simulations of simple quantum mechani-
cal systems, may suggest it has potential applications in lattice field theory, where isolated
modes are a more serious problem. In certain field theories, including lattice QCD, the states
we wish to construct via our Markov chain are in ‘distinct topological sectors which are la-
belled by a topological charge’[8]. For small lattice spacings moving between these sectors

1

can take a very long time, since they are separated by a region of high Euclidean action (i.e.
low probability in the distribution) and so the transitions are statistically suppressed [8], [9]
and [10]. It is therefore possible that tempered dynamics will have applications to theories
such as lattice QCD, where isolated modes arise as regions of distinct topological charge. In
general, the autocorrelation time which measures how correlated subsequent samples are in
a Monte Carlo simulation, will be high if the system is trapped in an isolated mode. The
purpose of tempering is to try and diminish the autocorrelation time, without the need for
extra computation.

We begin this report following the work of Creutz and Freedman in [11], who constructed a
MCMC simulation of the harmonic and anharmonic oscillators, however we will use HMC
where they used the Metropolis algorithm. Reproducing the results in [11] using the Metropo-
lis algorithm is a popular choice for undergraduate projects e.g. [12], [13] and [14] which
provide a useful comparison for our simulation which uses a different algorithm. Following
the steps taken in [11] we introduce and define the path integral of quantum mechanics, and
show that for a discrete lattice in imaginary time, the path integral can be considered as a
canonical partition function. This connection between quantum mechanics and statistical
physics is what will enable us to apply Monte Carlo methods, and we will see that quan-
tum expectation values in the ground state, correspond to classical expectation values of
the statistical system with a canonical distribution. We will then briefly review the topic of
Monte Carlo methods and explain how they can be used to approximate expectation values
for functions of random variables under some probability distribution via a Markov chain,
as well as defining detailed balance and ergodicity, which are conditions required for the
Monte Carlo simulation to be valid. Before introducing the HMC algorithm we very briefly
review Hamiltonian dynamics, explain how Hamilton’s equations can be integrated numeri-
cally via the leapfrog method, and show that as well as being reversible, the leapfrog method
preserves volume on the phase space of position and momentum coordinates, which we we
will see is necessary for detailed balance to hold. Having provided the relevant background,
we are then able to define the steps of the HMC algorithm and explain how it can be used
to sample from a canonical distribution, by defining axillary momenta coordinates and a
Hamiltonian. In this section we will also discuss the issue of ergodicity and show that HMC
obeys detailed balance. Due to the stochastic nature of MCMC algorithms, samples in the
Markov chain can be correlated and we briefly discuss the effect of this on data analysis.
The results section begins by applying the HMC algorithm to the canonical distribution for
a quantum mechanical system. We examine the results of our simulation for the harmonic
oscillator, where we are able to compare with numerical and exact results for the discrete
theory in [11],[12], [13] and [14]. The simple system of the harmonic oscillator provides a
good testing ground for our simulation, where we can easily compare our results to theory.
Moving on to the anharmonic oscillator we are able to apply our simulation to a system that
does not have an analytic solution. For the case of the anharmonic oscillator we are able to
compare our results to those acquired through alternative methods [15] and simulations [13],
however we will observe in this section that the HMC simulation begins to fail in the case
of the isolated modes in the double well potential. In particular the double well system can
have difficulty tunnelling between the two wells. At this point we will examine the effects of
introducing a tempering parameter into the simulation, with the hope that it will increase

2

the tunnel rate. We will show that volume preservation still holds for tempered dynamics,
which is necessary if it is still to obey detailed balance. Ultimately we find that tempering
does not solve the problem of the isolated modes in our system, however we end the report
by investigating why this is the case, tracking the evolution of the Hamiltonian during a
tempered leapfrog proposal trajectory. Based on this result we are then able to propose a
modified tempering method for future investigations into tempered HMC.

The main method for the simulation code, written for this project by the author is attached
in appendix C. A link to the GitHub repository which contains the full project directory is
also provided there, should the reader wish to examine or even run the code themselves.

2 Background

2.1 Quantum Mechanics

2.1.1 The Path Integral

In quantum mechanics we are often interested in calculating the path integral:

〈xb, tb|xa, ta〉 =
∫ xb

xa
Dx (t) exp

(
i

~
SM [x (t)]

)
, (1)

where we will use the notation:

Zba = 〈xb, tb|xa, ta〉 (2)
= 〈xb| e−i(tb−ta)Ĥ/~ |xa〉 , (3)

and Ĥ is the usual quantum mechanical Hamiltonian operator:

Ĥ (p̂, x̂) = p̂2

2m + V̂ (x̂) . (4)

Zba is the transition amplitude for a particle of mass m in position eigenstate (in the Heisen-
berg picture) |xa, ta〉 to move to position eigenstate |xb, tb〉; this gives us the probability
amplitude of a particle at xa at time ta, to move to position xb at time tb. The term on
the RHS of equation 1 is known as the Feynman path integral. The measure

∫
Dx (t) is an

integral over all paths between xa and xb, and SM [x (t)] is the Minkowski action of a particle
of mass m on the path x (t), which is defined by:

SM [x (t)] =
∫ tb

ta
dt

1
2m

(
dx

dt

)2

− V (x)
 , (5)

where x (ta) = xa and x (tb) = xb are the boundary conditions, and V (x) (now a function)
is the potential the particle is in.

Due to the oscillating integrand in equation 1, it is not clear the integral will converge, and
the integral measure needs to be defined before we proceed. In order to do this we follow
the steps taken in [11] to get equation 1 into a form we can work with.

3

position x

time t

ta

tb

xa xb

Figure 1. Three of the infinitely many paths from (xa, ta) to (xb, tb) that contribute to the
path integral.

2.1.2 Connecting to Statistical Physics

In the transition amplitude we integrate over an infinite number of paths, figure 1 shows
three such paths that contribute to the path integral. The first step in calculating the path
integral is to discretise time, this is shown in figure 2 where we have discretised the green
path in figure 1 onto a time lattice, and we assume the particle travels along a straight line
between the time sites. For each time site ti on the lattice, we have a continuous position
variable xi = x (ti) where i = 0, 1, . . . , N , which gives the position of the particle on the path
at that point on the lattice. We introduce the notation:

x = (x0, x1, . . . , xN) (6)

to denote a particular path on the lattice where each position coordinate has been specified,
and we refer to equation 6 as a configuration on the lattice. In our notation for the labelling of
the position eigenstates in equation 1, we also have xb = xN = x (tN) and xa = x0 = x (t0) in
order to match with figure 2. ε is the spacing between lattice sites and so ε = tb−ta

N
= ti+1−ti

and for k = 0, 1, . . . , N , we have tk = ta + kε. In order to discretise the action in equation 5
we approximate the derivative by a forward difference, and the integral as a Riemann sum,
since we assume the particle is travelling on a straight line between lattice sites:

SM (x) =
N−1∑
i=0

ε

[
1
2m

(
xi+1 − xi

ε

)2
− V (xi)

]
. (7)

Since for i = 1, 2, . . . , N − 1,−∞ < xi <∞ we may define the integral measure in equation
1 as: ∫ xb

xa
Dx ∼

N−1∏
n=1

∫ ∞
−∞

dxn, (8)

4

t0 = ta

t1

t2

t3

.

.

.

.

.

.

.

tN−2

tN−1

tN = tb

position x

time t

ε

xa xb

Figure 2. Discretising time and a path from (xa, ta) to (xb, tb) onto a lattice of time spacing ε.

which up to normalisation integrates over all possible routes through the lattice; so that for
our discrete time lattice, the path integral is given by:

Zba ∼
∫ +∞

−∞

N−1∏
i=1

dxi exp
(
i

~
SM (x)

)
. (9)

In the limit that N →∞ (or equivalently ε→ 0) we recover (up to normalisation) equation
1 from equation 9 exactly. The normalisation in this expression is irrelevant since we will see
that in the expectation values we wish to calculate, any normalisation would cancel anyway.

In order to work with the discrete path integral we have one final step. We make a Wick
rotation into imaginary time; this is done via the substitution:

τ = it. (10)

Applying this to the discretised theory developed above by defining a = iε, we now have a
lattice in imaginary time, of lattice spacing a, substituting a into equation 7:

SM (x) = i
N−1∑
i=0

a

[
1
2m

(
xi+1 − xi

a

)2
+ V (xi)

]
(11)

= iSE (x) , (12)

where we have redefined the notation slightly so that xi = x (τi), since we now have a lattice
in imaginary time. The quantity:

SE (x) ≡
N−1∑
i=0

a

[
1
2m

(
xi+1 − xi

a

)2
+ V (xi)

]
(13)

5

is the discretised Euclidean action; it has this name because the effect of the Wick trans-
formation is that it turns the Minkowski metric dsM on the coordinates (x, y, z, t), into the
Euclidean metric dsE on the coordinates (x, y, z, τ) and vice-versa:

ds2
M = −dt2 + dx2 + dy2 + dz2 (14)

= dτ 2 + dx2 + dy2 + dz2 (15)
= ds2

E. (16)

Equation 12 is a very useful result since upon substitution into the discrete path integral we
find:

Zba ∼
∫ +∞

−∞

N−1∏
i=1

dxi exp
(
−1
~
SE (x)

)
(17)

which we refer to as the discrete Euclidean path integral and will converge since the integrand
is now exponentially suppressed. We will impose periodic boundary conditions by identifying
the first and last lattice sites (i.e. take xb = xa), and then integrate over that site, which
can be quantified through:

Z = Tr (Zba) =
∫
dxa

∫
dxbδ (xb − xa)Zba (18)

=
∫ +∞

−∞

N−1∏
i=0

dxi exp
(
−1
~
SE (x)

)
, (19)

where in equation 19 the identification of the first and last lattice sites is now implicit. We
have the standard result from statistical physics that for a system with a fixed number of
N continuous degrees of freedom, labelled by xi for i = 0, 1, . . . N − 1, so that the vector
x = (x0, . . . , xN−1) describes the system with a classical Hamiltonian H, then the canonical
partition function is given by:

Z ∼
∫ +∞

−∞

N−1∏
i=0

dxi exp (−βH (x)), (20)

with β = 1
kBT

where T is the system temperature and kB is the Boltzmann constant. Com-
paring equation 19 to equation 20, we can see that the discretised Euclidean path integral
is a classical canonical partition function on a system with N degrees of freedom, provided
that we take:

1
~
SE (x) = βH (x) , (21)

and impose periodic boundary conditions. We then have a Boltzmann factor given by
exp

(
−1

~SE (x)
)
. So in summary we now have a classical interpretation of our quantum

calculation of the path integral; our lattice is essentially a one dimensional crystal of size N
at temperature T with a continuous variable xi at each crystal site, and its classical Hamilto-
nian (in the statistical system and units where ~ = β = 1) is given by SE (x), which couples
the nearest neighbour lattice variables xi and places each variable in its own potential.

Since we are interested in calculating properties of the quantum system, e.g. position ex-
pectation, ground state energy, the first excited state energy etc. we will explore how the

6

quantum expectation values relate to those of the statistical system. Note that upon ap-
plying the Wick transformation and periodic boundary conditions to the continuum theory
path integral in equation 3:

Z =
∫ +∞

−∞
dx 〈x| e−(τb−τa)Ĥ/~ |x〉 = Tr

(
e−(τb−τa)Ĥ/~

)
. (22)

Following [11] we define for any operator Â the quantity:

〈Â〉 =
Tr
(
e−(τb−τa)Ĥ/~Â

)
Tr
(
e−(τb−τa)Ĥ/~

) (23)

and after repeating the above discretisation theory equation 23 can be written as [11]:

〈Â〉 =
∫+∞
−∞

∏N−1
i=0 dxiA (x0, . . . , xN−1) exp

(
−1

~SE (x)
)

∫+∞
−∞

∏N−1
i=0 dxi exp

(
−1

~SE (x)
) (24)

= 〈A〉, (25)

where A (x0, . . . xN−1) is a now a function on our lattice position variables. Equation 24 is
precisely the statistical expectation value 〈A〉1 of the function A on our system with the
canonical distribution with density function:

P (x) = 1
Z

exp
(
−1
~
SE (x)

)
, (26)

where Z is the partition function for the discrete theory as derived above. We can see from
equation 24 that the normalisation in Z is indeed not relevant for calculating such expres-
sions, as it would cancel between the numerator and the denominator in the discretisation.
It can also be shown that in the limit that τb − τa →∞, that is, for a large enough lattice,
equation 23 takes the form [11]:

〈Â〉 =
∑∞
n=0 e

− 1
~En(τb−τa) 〈n| Â |n〉∑∞

n=0 e
− 1

~En(τb−τa)
(27)

= 〈0| Â |0〉 . (28)

So, in order to calculate the expectation value of some operator in the ground state e.g.
position, position squared or the Hamiltonian to get an energy eigenvalue, we can utilise
equation 24 and calculate the expectation of the corresponding function on the statistical
system under the canonical distribution. In practice the high dimensional integral in equation
24 is not possible to compute analytically, so we use Monte Carlo methods which we develop
in the next chapter.

1There is a clash of notation with regards to using the angle brackets here. However, since it is useful to
know in what context the values are being calculated, we will always use hats to denote quantum expectations
and include the state with respect to which the expectation is being calculated, i.e. 〈0| Â |0〉 and use 〈A〉 for
the statistical expectation. This distinction is somewhat redundant since we have seen the two quantities
are equivalent for a large enough lattice, but it is useful to determine the context in which we are working.

7

Due to divergences in the kinetic term of the expectation of the action 〈SE〉 of O (1/a)[11]
that occur in the calculation for the ground state energy given by:

E0 = 〈0| Ĥ |0〉 (29)

= lim
τb−τa→∞

Tr
(
e−(τb−τa)Ĥ/~Ĥ

)
Tr
(
e−(τb−τa)Ĥ/~

) (30)

= lim
τb−τa→∞

−1
τb − τa

∂

∂ (~−1) lnZ (31)

= lim
τb−τa→∞

−1
τb − τa

∂

∂ (~−1) ln
∫ +∞

−∞

N−1∏
i=0

dxi exp
(
−1
~
SE (x)

)
, (32)

in the discrete theory, we need an alternative method for calculating the lowest lying energy
eigenvalues in our system as a → 0. Rather than use the point splitting fix given in [16],
we will follow the method used in [11], [13] and [14] and utilise the quantum virial theorem,
which relates the expectation value of kinetic energy to that of the potential for stationary
states as:

2 〈n| T̂ |n〉 = 〈n| x̂V̂ ′ (x̂) |n〉 , (33)
the derivation of which can be found in [17] and [18]. Using equations 24 and 28 we then
have that the lowest lying energy eigenstates can be calculated as:

E0 = 〈0| Ĥ |0〉 (34)
= 〈0| T̂ + V̂ |0〉 (35)

= 〈0| 12 x̂V̂
′ (x̂) + V̂ (x̂) |0〉 (36)

= 〈12xV
′ (x) + V (x)〉 (37)

for a large enough lattice. It should be noted that the virial theorem as stated in equation
33 is a continuum result, and its applicability to the discrete case may not be valid without
correction terms. Indeed, we found that when calculating the first excited state energy of the
harmonic oscillator, via the naive method of computing E1 = ∆E+E0, where the energy gap
∆E = E1 − E0 was computed via the correlation function as below, which is a result from
discrete theory, and E0 via the virial theorem, a continuum result, there was a discrepancy
in the case of the harmonic oscillator with the analytic result for E1, which can be computed
exactly.

To calculate the first excited state energy eigenvalues, we first need to introduce the con-
nected two point correlation function:

Γ(2)
c (τ) = 〈x̂ (0) x̂ (τ)〉 − 〈x̂ (0)〉 〈x̂ (τ)〉 , (38)

then for a large enough lattice:

Γ(2)
c (τ) = 〈0| x̂ (0) x̂ (τ) |0〉 − 〈0| x̂ (0) |0〉 〈0| x̂ (τ) |0〉 (39)

=
∑
n6=0
| 〈0| x̂ |n〉 |2e−(En−E0)τ/~ (40)

8

where in the first equality we have used equation 28, and in the second we have first inserted
a complete set of energy eigenstates 1̂ = ∑

n |n〉 〈n| between the position operators in the
first term, then transformed from the Heisenberg picture to the Schrödinger picture using
the standard result that x̂ (τ) = Û † (τ, τ0) x̂Û (τ, τ0), where in imaginary time the unitary
operator Û † (τ, τ0) = e−(τ−τ0)Ĥ/~. Then for large enough values of τ , only the first term in
the sum contributes and upon normalisation we find that:

Γ(2)
c (τ + ∆τ)

Γ(2)
c (τ)

= e−(E1−E0)∆τ/~. (41)

The value of the first excited state is then given by:

E1 = E0 −
~

∆τ ln
(

Γ(2)
c (τ + ∆τ)

Γ(2)
c (τ)

)
. (42)

It is interesting to note that in quantum mechanics, due to the uncertainty principle ∆x∆p ≥
~
2 , ~ provides a measure of quantum fluctuations in our system. As ~ → 0 we recover
classical physics and in this limit the only path in the path integral that contributes to
the transition amplitude is the classical one. On the other hand, in statistical mechanics T
provides a measure of statistical fluctuations in our system, and in the limit that T → 0
these fluctuations go to zero. Hence taking the limit that ~→ 0 and T → 0 we see statistical
mechanics on a (real) crystal lattice, is equivalent to quantum mechanics in imaginary time.

3 Methods

3.1 Monte Carlo Methods

Monte Carlo methods provide a way of numerically evaluating integrals where the error is
independent of the dimensionality of the integral. For the purposes of our work, we will be
interested in estimating expectation values of functions (which are the observables of our
statistical system) A (X) of some d-dimensional random variable X under some probability
distribution with density function f (x):

〈A (X)〉 =
∫ d∏

i=1
dxif (x)A (x) . (43)

Equation 43 takes the form of the statistical expectation we wish to calculate in equation
24, where x correspond to the configurations on the lattice, f (x) the density function of
the canonical distribution and A (x) some function on the lattice such as mean position. In
order to estimate the integral we approximate the expectation as a sample mean on some
finite set of M samples of X as (we will refer to this as the Monte Carlo estimate):

〈A (X)〉 ≈ 1
M

M∑
n=1

A (xn) . (44)

9

It can be shown that the error in equation 44 is always O
(
1/
√
M
)

independent of the
dimension of the integral, and that the Monte Carlo method wins over quadrature methods
(traditional numerical integration schemes) in terms of computational cost vs. accuracy for
d > 3 [19]. It is now just a question of how to choose the samples xn to get a expectation
value with a small error. From the form of equation 43 drawing uniform samples from the
support of f is clearly unwise, since this would give equal weight to contributions to our
approximation of the expectation value for samples that are very unlikely to be realised by
the random variable X under its distribution, as those which are very likely to be realised.
We therefore choose to draw samples according to the distribution of X, this is known as
importance sampling. In order to draw samples according to a probability distribution we
use a Markov chain, which for our purposes can be defined as a sequence of random variables
(samples), for which the probability of the next random variable in the sequence x′ taking
on a particular value depends only on the value of the current random variable x; we will
denote this probability by P (x→ x′). By starting from some arbitrary state (which in
our simulation is a configuration) through the stochastic sequence of configurations we will
eventually end up sampling from the desired equilibrium distribution with density function
f (x). This idea of a Markov Chain Monte Carlo method was first introduced by Metropolis
et al. in [2] via the Metropolis algorithm. Hybrid Monte Carlo is a method for constructing
such a Markov chain, and it is discussed in the next section.

A Markov chain will converge on a distribution with density function P (x) provided the
chain is ergodic and obeys detailed balance. Ergodicity is the condition that any sample
that can be realised under the probability distribution can be reached through the Markov
chain, and the detailed balance condition is given by:

P (x)P (x→ x′) = P (x′)P (x′ → x) . (45)

During an actual simulation, one only starts to calculate the values of observables via equa-
tion 44 after an equilibration period, this is due to the fact that initially samples will not be
drawn according to the correct probability distribution and it is only once the Markov chain
has converged that they will.

We may consider our Monte Carlo simulation as consisting of three main stages. First,
to start the simulation we provide an initial configuration to begin the chain. Second, we
have to perform a sufficient number of updates in the chain such that we are drawing from
the correct distribution, which in our case is the canonical distribution for our statistical
system. Once we are at equilibrium we may compute the values of any observables on any
configuration and use them to calculate the Monte Carlo estimate via equation 44; this is
the third stage. In order to provide an initial lattice configuration, we found that after some
experimentation, a reasonable method was to provide a so called hot start, by uniformly
distributing the position values of the lattice sites on the interval [−1, 1]. To determine
when and if samples are being drawn from the equilibrium distribution, one can observe the
evolution of some set of observables, for example position, and see when these values begin
to converge. This method has potential issues in that there are the possibilities of metastable
states [20], for which it may seem as if the system has reached equilibrium, when in fact
it is sampling from region of the configuration space for which it is metastable, i.e. it will

10

remain sampling from this region for a long period of time, but will not remain indefinitely.
This issue will arise for the case of the anharmonic oscillator, where the possibility lattice
variables getting stuck in one well can lead to Monte Carlo estimates on 〈x〉 being non-zero
for a symmetric double well about zero. However, in this case we are able to identify when
this metastability has occurred, since by symmetry we know the true answer, 〈x〉 = 0. Once
we have achieved equilibrium we are able to evaluate observables via the configurations,
however due to the possibility of correlations between samples in the Markov chain this is
not entirely trivial; the analysis of recorded data is discussed at the end of this chapter.

3.2 Hybrid Monte Carlo

3.2.1 Hamiltonian Dynamics

Due to the fundamental importance of Hamiltonian dynamics in the HMC algorithm, in this
section we provide a quick review of Hamilton’s equations, and explain the numerical method
used to integrate these equations, so that they may be used in computational simulations.

Hamiltonian Dynamics enables us to solve the time evolution of a system of canonical coordi-
nates (q,p), where the d-dimensional q = (q1, q2, . . . , qd) and p = (p1, p2, . . . , pd) vectors are
called position and momentum respectively. The system is then characterised by a Hamil-
tonian function H (q,p) on the 2d-dimensional phase space occupied by the (q,p) vectors.
Hamilton’s equations:

dqi
dt

= ∂H

∂pi
(46)

dpi
dt

= −∂H
∂qi

(47)

for i = 1, 2, . . . d, provide the time evolution of the vectors q and p, so that if the state of
the system is (q,p) at time t, then Hamilton’s equations give a mapping T (s) to the state
(q′,p′) at time t + s. We will see in section 3.2.2 for the purposes of the implementing the
HMC algorithm, we may assume that the Hamiltonian is of the form:

H (q,p) = U (q) +K (p) , (48)

where U (q) and K (p) are known as the potential and kinetic terms respectively. Equations
46 and 47 then become:

dqi
dt

= ∂K

∂pi
(49)

dpi
dt

= −∂U
∂qi

. (50)

Since we intend to use the solutions to Hamilton’s equations in the HMC simulation, we need
to find a way of integrating them numerically; in [3] it is argued that a successful method

11

for this is leapfrog integration. In the leapfrog method, to make the small time step ε from t
to t+ ε in position and momentum we use the equations:

pi (t+ ε/2) = pi (t) + ε/2dpi
dt

(t) = pi (t)− ε/2
∂U

∂qi
(q (t)) , (51)

qi (t+ ε) = qi (t) + ε
dqi
dt

(t+ ε/2) = qi (t) + ε
∂K

∂pi
(p (t+ ε/2)) , (52)

pi (t+ ε) = pi (t+ ε/2) + ε/2dpi
dt

(t+ ε/2) = pi (t+ ε/2)− ε/2∂U
∂qi

(q (t+ ε)) , (53)

where in the second equality in each step we have made the substitution for Hamilton’s
equations. In equation 51 we begin with a half step in each momentum component to go
from t to t+ε/2. Using the half stepped momenta we then do a full step from t to t+ε in each
position component in equation 52. We end in equation 53 with a second half step in the
momentum components to go from t+ ε/2 to t+ ε, using the updated position components.
Iterating this process we do as many steps of size ε as we like.

This generalises to making l steps in position and momentum and we can combine any two
half steps in momentum that follow one another to simplify the algorithm, which is often
more convenient for computation purposes. Starting at t = 0:

1. We begin with a half step in momentum:

pi (ε/2) = pi (0)− ε/2∂U
∂qi

(q (0)) , (54)

and then a full step in position:

qi (ε) = qi (0) + ε
∂K

∂pi
(p (ε/2)) . (55)

2. Then make l − 1 alternating full steps in momentum and position:

pi (nε+ ε/2) = pi (nε− ε/2)− ε∂U
∂qi

(q (nε)) , (56)

qi (nε+ ε) = qi (nε) + ε
∂K

∂pi
(p (nε+ ε/2)) , (57)

for n = 1, . . . , l − 1.

3. Then a final half step in momentum:

pi (lε) = pi (lε− ε/2)− ε/2∂U
∂qi

(q (lε)) . (58)

12

The reasoning for the name leapfrog becomes apparent here, since apart from the initial and
final half steps in momentum, the momentum and position values are used alternatively to
calculate the position and momentum respectively at the next step, and the variables leap
over one another at on offset of ε/2.

An important feature of the leapfrog integration scheme that makes it applicable to HMC is
that it preserves volume in phase space exactly, which we will see leads to detailed balance.
For Hamiltonian dynamics in continuous time, preservation of volume in phase space is known
as Louville’s theorem and its proof is given in [21]. For the discrete dynamics integrated via
the leapfrog scheme, we can easily verify that volume preservation is still the case. First let
us define the mappings Tq (ε) : (q,p)→ (q′,p′) and Tp (ε) : (q,p)→ (q′,p′) on phase space
such that:

Tq (ε)
(
q
p

)
=
(
q + ε∇pK (p)

p

)
(59)

Tp (ε)
(
q
p

)
=
(

q
p− ε∇qU (q)

)
, (60)

then (with a slight abuse of notation) the Jacobians of these mappings will be of the form:

J = det
 ∂q′i
∂qj

∂q′i
∂pj

∂p′i
∂qj

∂p′i
∂pj

 (61)

so that:

Jq = det
(
δij ε∂pi∂pjK (p)
0 δij

)
= 1 (62)

Jp = det
(

δij 0
−ε∂qi∂qjU (q) δij

)
= 1. (63)

For a single step of size ε the leapfrog algorithm equations 51, 52 and 53 define a mapping
on phase space T (ε) : (q (t) ,p (t)) → (q (t+ ε) ,p (t+ ε)) that can be written using the
mappings given above as:

T (ε) = Tp (ε/2) ◦ Tq (ε) ◦ Tp (ε/2) . (64)

Since each map in the composition on the right hand side of equation 64 has a Jacobian of
1, we have that the Jacobian of T (ε) is 1. For the total trajectory which consists of l steps
of size ε, we may write the mapping that via leapfrog integration takes us from the start to
the end of the trajectory as:

traj (ε, l) = (T (ε))l , (65)

which of course also a Jacobian of 1, since each mapping in the composition has Jacobian 1.
Hence leapfrog integration preserves volume on phase space exactly, since as a mapping its
Jacobian is 1. We will return to this argument in section 4.2.2, where we will show that the
leapfrog integration scheme preserves volume even for the case of tempered dynamics.

13

For a Hamiltonian of the form in equation 48 with a symmetric kinetic term K (p) = K (−p)
(which we will see is always the case for our work), then by negating the momenta at the
end of a trajectory and applying the leapfrog equations a second time, we will return to the
initial point in phase space and hence the dynamics is reversible. Negating the momenta at
the end of a leapfrog trajectory will also preserve the volume.

3.2.2 Sampling and the Hamiltonian

For a physical system in thermodynamic equilibrium with a fixed number of degrees of
freedom and with energy function E (x), where the vector x = (x1, x2, . . . , xd) denotes the
state of the system that depends on d variables, the canonical distribution in units where
kb = 1 is defined by the density function:

P (x) = 1
Z

exp
(
−E (x)

T

)
, (66)

where Z is the canonical partition function for the system, which provides the normalisation:

Z =
∫ d∏

i=1
dxi exp

(
−E (x)

T

)
. (67)

Alternatively a probability density function P (x) can be constructed as the canonical dis-
tribution for the energy function E (x) = −T (logP (x) + logZ), for some choice of T and
Z [3].

A Hamiltonian of the form H (q,p) = U (q) + K (p) is an energy function on the 2d-
dimensional phase space given by position and momentum (q,p), with q = (q1, q2, . . . , qd)
and p = (p1, p2, . . . , pd). We may define a canonical distribution on those variables via the
density function:

P (q,p) = 1
Z

exp
(
−H (q,p)

T

)
, (68)

with
Z =

∫ d∏
i=1

dxidpi exp
(
−H (q,p)

T

)
. (69)

Then, if H (q,p) = U (q) +K (p) this factorises as:

P (q,p) = 1
Zq

exp
(
−U (q)

T

)
1
Zp

exp
(
−K (p)

T

)
= P (q)P (p) , (70)

(where Zq and Zp denote the marginal partition functions) so the variables q and p and
their respective probability distributions are independent with energy functions U (q) and
K (p). This means that in order to sample q according to the marginal distribution of q with
density function P (q), we can sample from the joint distribution of q and p with density
function P (q,p) and disregard the p.

14

In the HMC algorithm we employ Hamiltonian dynamics to sample from the joint distribu-
tion of (q,p). If we have some probability distribution P (x) for states x we wish to sample,
we may through equation 66 define an energy function E (x) for that distribution. We then
define q ≡ x and U (q) ≡ E (x), introduce fictitious momenta p and define a kinetic energy
K (p) and the Hamiltonian H (q,p) = U (q) + K (p). Running the HMC algorithm gener-
ates samples according to the distribution given by equation 68, but by the factorization in
equation 70 this gives samples of x according to our original distribution given by P (x).
In the HMC algorithm, we think of the variables of interest x as position q with conjugate
momenta p, which of course matches up nicely in physical applications where we are actually
sampling position, although the algorithm is equally applicable in non-physical cases.

Since the fictitious momenta p are introduced artificially, we need to choose their probability
distribution with density function P (p) by specifying the kinetic energy function K (p). For
the purposes of our work we may take:

K (p) =
d∑
i=1

p2
i

2 (71)

and T = 1 from now on.

3.2.3 Steps of the HMC Algorithm

Here we will outline the main steps of the HMC algorithm as defined in [1], [3] and [22]
then give a more detailed explanation of each stage and its implementation. The two key
steps are 1 and 2. In step 1 momentum is changed, whereas step 2 can change position as
well as momentum. The canonical joint distribution for (q,p) is left invariant in both steps,
therefore is also invariant under their combination; this is the detailed balance condition.
The steps of the algorithm are:

0. Provide an initial sample q.

1. Generate p from the multivariate Gaussian Distribution N (0, Id×d).

2. Evolve the variables from (q,p) to (q′,p′) by simulating Hamiltonian dynamics for
l steps of size ε and then negate the momentum variables at the end of the trajec-
tory. Accept the proposed state (q′,−p′) as the next state in the Markov chain with
probability:

min [1, exp (−HHMC (q′,−p′) +HHMC (q,p))].

If the proposed state is rejected, record the current state q as a sample (i.e. state
started with), if successful set current state to proposed state q = q′ and record it as
a sample.

3. Return to step 1 with q.

15

In step 0 we provide an initial state. This can be chosen or generated randomly, however
since we normally disregard the samples generated in the early HMC iterations as discussed
above, this choice is not critical.

In step 1 we draw the fictitious momenta according to their probability distribution. The
choice of kinetic energy in equation 71 and the form of equation 66 means that:

P (p) = 1
Zp

exp
(
−

d∑
i=1

p2
i

2

)
(72)

=
d∏
i=1

1√
2π

exp
(
−p

2
i

2

)
(73)

=
d∏
i=1

P (pi) , (74)

where each P (pi) is the density function of a Gaussian distribution of mean 0 and variance
1. So each pi is independent and drawn from a Gaussian N (0, 1), therefore we draw p
from a multivariate Gaussian distribution of mean 0 and covariance Id×d. The canonical
joint distribution is left invariant in this step; we do not modify q, and p is drawn from
its correct conditional distribution given q, which is its marginal distribution by the above
independence [3].

In step 2 we evolve the variables (q,p) by integrating Hamilton’s equations, this is often
referred to as the molecular dynamics and we will define the map that carries out this
evolution as H : (q,p) → (q′,p′). In order to implement this in a computer simulation
we use the leapfrog method described in section 3.2.1, although in general any numerical
integration scheme that is exactly area preserving and reversible is valid [22]. We have a
choice of the number of time steps l and their size ε; it is common practice in HMC to
choose ε and l such that lε = 1. At the end of the trajectory, negating the momentum
variables makes the Metropolis proposal symmetric, which is needed for detailed balance to
hold. However, because the choice of kinetic energy in equation 71 is quadratic in p, so
that the HMC Hamiltonian is symmetric in p, and since the momentum is replaced anyway
in the next iteration, there is no need for the negation in a simulation. We can define a
mapping for the momentum flip as F : (q′,p′) → (q′,−p′) so that the mapping that gives
the proposed update is F ◦ H : (q,p) → (q′,−p′). Since H preserves volume, and trivially
negating momenta with F also preserves volume, the mapping F ◦ H will preserve volume.
We accept or reject the proposed state with a probability given by:

P (q′,p′, q,p) = min [1, exp (−HHMC (q′,p′) +HHMC (q,p))], (75)

which is known as a Metropolis update. The interpretation of equation 75 is that if the
Hamiltonian decreases (or stays constant) as a result of moving to the proposed state, the
update is accepted with certainty. However, if the Hamiltonian increases as a result of moving
to the proposed state, the proposal is accepted with a probability that decreases exponentially
for larger increases in the Hamiltonian. If the state is accepted, then it becomes the current
state i.e. q = q′, otherwise the current state remains as it was in step 1. In either case we
then record the current state as a sample and return to step 1 with that state.

16

From the Metropolis update in equation 75 we can show that for smaller values of ε and
larger l (i.e. smaller time steps and more of them), the probability of accepting an update
approaches 1. To see this note that as ε → 0 and l → ∞ the leapfrog method approaches
an exact integration of Hamilton’s equations. It is easily shown that for continuous time the
Hamiltonian is a conserved quantity:

dH

dt
=

d∑
i=1

[
dqi
dt

∂H

∂qi
+ dpi

dt

∂H

∂pi

]
=

d∑
i=1

[
∂H

∂pi

∂H

∂qi
− ∂H

∂qi

∂H

∂pi

]
= 0, (76)

where in the second equality we have used Hamilton’s equations. Therefore as ε → 0 and
l → ∞, HHMC (q,p) → HHMC (q′,p′) and so the probability of accepting a state is always
1.

As ε decreases l increases provided lε is kept fixed, therefore more steps and hence a larger
computational cost is required for proposal states with smaller ε in the trajectory. Conversely
if we have a fixed computation time, then for smaller ε we will generate less proposals with a
higher acceptance rate, and hence the error in the Monte Carlo estimate on any observable
will be larger. It is shown in [23] that an acceptance rate of ∼ 65.1% provides an optimal
balance between the cost of generating proposals and the total number of samples.

HMC will be typically ergodic [3], however proving ergodicity is highly non-trivial, we will
therefore assume that ergodicity of the HMC algorithm holds for our simulation and refer
the reader to the mathematical literature on the subject such as [24], [25] and [26] for
justification.

We can however show that HMC obeys detailed balance. In order to do this we will (for
notational simplicity) adopt field theory notation and set q → φ and p→ π and redefine the
density function of the canonical distribution in equation 68 as P (q,p) → p (φ, π), where
we are using a lower case p to emphasise the fact we are dealing with a probability density.
p (φ, π) dφdπ is then the probability of being in the volume given by the intervals [φ, φ+ dφ]
and [π, π + dπ] and since the kinetic term in the Hamiltonian is quadratic and therefore
symmetric in π, p (φ, π) = p (φ,−π). If P ((φ, π)→ (φ′, π′)) is the probability of moving
from (φ, π) to (φ′, π′) the detailed balance condition for HMC given by equation 45 becomes:

dφdπp (φ, π)P ((φ, π)→ (φ′,−π′)) = dφ′d (−π′) p (φ′,−π′)P ((φ′,−π′)→ (φ, π)) (77)
= dφ′dπ′p (φ′, π′)P ((φ′,−π′)→ (φ, π)) , (78)

where in the second equality we have used preservation of volume under negation of momenta
and the symmetry of the density function in π. We have shown preservation of volume in
phase space for the leapfrog method, so that dφdπ = dφ′dπ′. We may decompose the second
factor in the LHS of equation 77 as:

P ((φ, π)→ (φ′,−π′)) = PF◦H ((φ, π)→ (φ′,−π′))PA ((φ, π)→ (φ′,−π′)) , (79)

where PF◦H is the probability of proposing the update under the molecular dynamics and
momentum flip, and PA is the probability of actually accepting that move. By the fact that
leapfrog is reversible we have that:

PF◦H ((φ, π)→ (φ′,−π′)) = PF◦H ((φ′,−π′)→ (φ, π)) , (80)

17

and since we are using the Metropolis update step and the Hamiltonian is symmetric in π:

PA ((φ, π)→ (φ′,−π′)) = min [1, exp (− (H (φ′,−π′)−H (φ, π)))] (81)
= min [1, exp (− (H (φ′, π′)−H (φ, π)))] (82)
= PA ((φ, π)→ (φ′, π′)) . (83)

Starting from the LHS of equation 77 we get that:

dφdπp (φ, π)P ((φ, π)→ (φ′,−π′)) (84)

= dφdπ
1
Z
e−H(φ,π)PF◦H ((φ, π)→ (φ′,−π′)) min

[
1, e(−(H(φ′,π′)−H(φ,π)))

]
(85)

= dφdπ
1
Z
e−H(φ′,π′)PF◦H ((φ′,−π′)→ (φ, π)) min

[
e(−(H(φ,π)−H(φ′,π′))), 1

]
(86)

= dφ′dπ′
1
Z
e−H(φ′,π′)PF◦H ((φ′,−π′)→ (φ, π)) min

[
1, e(−(H(φ,π)−H(φ′,π′)))

]
(87)

= dφ′dπ′p (φ′, π′)P ((φ′,−π′)→ (φ, π)) , (88)

where in the first equality we have just used the definitions, in the second we have used
reversibility of the leapfrog integration scheme and factored out an exponent from the min
function, and in the third equality we have used the volume preservation, so detailed balance
holds for HMC.

3.3 Data Analysis

The results of our simulation will ultimately be average values with accompanying statistical
errors for several measured observables. Because Monte Carlo simulations generate samples
using a Markov chain, subsequent samples in the chain can be correlated, in which case naive
error estimates can be wrong. In what follows we will briefly explore this issue and explain
our method for dealing with this problem in the simulation.

Uncorrelated Data If via our HMC simulation we have generated configurations at equi-
librium and calculated the values of x1, . . . , xn of some observable (e.g. the ground state
energy, or position expectation in the ground state) on each configuration, then since the
Markov chain is a sequence of random variables, each sample xi is the realisation of some
random variable Xi. The lattice configurations and therefore the samples that are functions
of those configurations are generated at equilibrium according to the canonical distribution,
and therefore have identical expectations and variance:

〈Xi〉 = 〈X〉 (89)
σ2
Xi

= 〈(Xi − 〈Xi〉)2〉 = σ2
X , (90)

18

and unbiased estimators for these values are [19]:

X = 1
n

n∑
i=1

Xi (91)

σ2
X = 1

n− 1

n∑
i=1

(
Xi −X

)2
. (92)

For Xi uncorrelated and i 6= j, 〈XiXj〉 = 〈Xi〉〈Xj〉 = 〈X〉2 from which it can be shown [19]
that:

σ2
X

= 1
n
σ2
X , (93)

so that the statistical error (standard deviation) in the observable X is σX and by approx-
imating σX by the (now biased) estimator σX , for n uncorrelated measurements of some
observable X, our final estimate will be:

X ± σX√
n
, (94)

from which we can see the error is O (1/
√
n).

Correlated Data Subsequent samples generated in the HMC simulation will be correlated
due to the fact that they are generated via a Markov chain and hence the above error analysis
will not be valid in general. In order to quantify the correlation between samples we can
use the autocorrelation function. If the random variables are correlated, they will have a
non-vanishing autocorrelation function which is given by:

CX (Xi, Xi+t) = 〈(Xi − 〈Xi〉) (Xi+t − 〈Xi+t)〉 = 〈XiXi+t〉 − 〈Xi〉〈Xi+t〉. (95)

For invariance in the shift of the index 〈Xi〉 = 〈X〉 (which we can assume here since we are
always sampling from the canonical distribution at equilibrium), the correlation function only
depends on the separation time t between samples in the chain, and utilising the translational
invariance in the index i we are able to get a good estimate on the correlation function from
the sum:

CX (t) ≈ 1
n

n∑
i=1

CX (Xi, Xi+t) . (96)

It is useful to normalise the autocorrelation function by:

ΓX (t) ≡ CX (t)
CX (0) , (97)

since equation 97 typically takes the form of a sum of exponentials, however for large t we
may truncate to the asymptomatically leading term [19]:

ΓX (t) ∼ exp
(
− t

τX,exp

)
, (98)

19

where τX,exp is the exponential autocorrelation time for X, which gives us a measure of the
number of configurations in the Markov chain, before measurements we are working with
become uncorrelated. It is important to note that different observables will have in general,
different autocorrelation times. For example, we may on each configuration of the lattice
compute position expectation, and position squared expectation, which may have different
autocorrelation times. Therefore in order to get an overall measure of when all measurements
become uncorrelated, we should compute τexp = supX τX,exp for all observables X.

For correlated random variables, equation 93 is no longer valid, however it can be shown for
the correlated case [19] that:

σ2
X
≈ σ2

X

n
2τX,int, (99)

where the integrated autocorrelation time τX,int is defined by:

τX,int = 1
2 +

n∑
t=1

ΓX (t) , (100)

and provides a second measure (like the exponential autocorrelation time) of the number of
configurations before the samples become uncorrelated. As before, the integrated autocorre-
lation time will vary for different measured quantities, so to find the number of configurations
before measurements are completely uncorrelated one should consider supX τX,int. For the
case of correlated samples, our estimates will now be:

X ±
√

1
n

2τX,intσ2
X , (101)

and we can see that the error will be larger than in equation 94 where we assumed the
samples were uncorrelated.

In practice obtaining the values of either the exponential, or integrated autocorrelation times
is not always easy. Due to the statistical noise that appears in the autocorrelation function
at larger times one needs to first plot the autocorrelation function, then either fit an expo-
nential for τX,exp, or compute the sum in τX,int for an appropriate range. For the systems we
simulated computational costs are (relatively) small, so rather than compute the autocor-
relation times after the simulation to determine the errors in any quantities, we introduce
into the simulation a parameter that determines at what frequency measurements are ac-
tually recorded from configurations in the Markov chain. By increasing this parameter on
preliminary test runs until τX,int and τX,exp are both less than one, we know that our mea-
surements are always uncorrelated and we are therefore free to use the naive error in equation
94 with confidence. This makes the simulation somewhat simpler, since it allows us to do
statistical analysis during the simulation, rather than saving all generated configurations and
performing data analysis after.

Finally in section 3.2.2 we claimed the optimum acceptance rate for HMC was ∼ 65.1%, in
the results that follow we tuned our input parameters of the number of leapfrog steps l and
step size ε such that the success rate is close to or greater than this value. In each simulation

20

we also ran an initial test to see how long the system took to reach equilibrium by measuring
the evolution of the value of an observable during the simulation. In all results that follow
configurations generated during the equilibration period have been disregarded, and we can
therefore assume that all measurements were made at equilibrium.

4 Results and Discussion

4.1 Quantum Oscillators

In section 2.1.1 we showed that by discretising the path integral and performing a Wick
rotation into imaginary time, the path integral of quantum mechanics is a canonical partition
function on a periodic lattice of N sites at spacing a. Working now in units where ~ = T =
kB = 1, we have a statistical system with the canonical distribution and density function:

P (x) = 1
Z

exp (−SE (x)). (102)

The probability distribution of equation 102 is the distribution we wish to draw our samples
according to for the Monte Carlo simulations, where the samples xi = (xi1 , . . . , xin) are lattice
configurations, therefore we follow the HMC method of section 3.2.2 with this distribution,
taking q ≡ x,

U (q) ≡ SE (x) (103)

=
N−1∑
i=0

a

[
1
2m

(
xi+1 − xi

a

)2
+ V (xi)

]
(104)

and the kinetic energy K (p) as in equation 71. We define our HMC Hamiltonian:

HHMC (q,p) ≡ K (p) + U (q) (105)

=
N−1∑
i=0

p2
i

2 + SE (q) (106)

=
N−1∑
i=0

p2
i

2 +
N−1∑
i=0

a

[
1
2m

(
qi+1 − qi

a

)2
+ V (qi)

]
, (107)

we can then use this Hamiltonian to generate samples xi with the HMC algorithm for
any 1-dimensional quantum mechanical system, by specifying the potential V (x). Once
we reach equilibrium, we can compute the value of any functions (observables) we like on
the configurations, such as position moments, or correlation functions, which via the Monte
Carlo estimate of equation 44, gives an approximation of the true expectation value under the
canonical distribution. We know that these statistical expectations correspond to quantum
expectation values in the ground state for a large enough lattice, so to pick out the ground
state Na should be reasonably large and to approximate the continuum result, a should
be taken to be small. With the choice of kinetic energy given in equation 71 and U (q) ≡
SE (x), this leads to the approximate solutions to Hamilton’s equations in the leapfrog
implementation for l steps of size ε taking the form:

21

1. Half step in momentum:

pi (ε/2) = pi (0)− ε/2
[
m

a
(2qi (0)− qi−1 (0)− qi+1 (0)) + a

∂V (qi (0))
∂qi

]
, (108)

then full step in position:

qi (ε) = qi (0) + εpi (ε/2) . (109)

2. Make l − 1 alternating full steps in momentum and position:

pi (nε+ ε/2) = pi (nε− ε/2)− ε
[
m

a
(2qi (nε)− qi−1 (nε)− qi+1 (nε)) + a

∂V (qi (nε))
∂qi

]
,

(110)

qi (nε+ ε) = qi (nε) + εpi (nε+ ε/2) , (111)
for n = 1, . . . , l − 1.

3. Final half step in momentum:

pi (εl) = pi (lε− ε/2)− ε/2
[
m

a
(2qi (εl)− qi−1 (εl)− qi+1 (εl)) + a

∂V (qi (εl))
∂qi

]
, (112)

where we are as mentioned previously, imposing the periodic boundary conditions that qN =
q0.

4.1.1 Quantum Harmonic Oscillator

We begin by applying the HMC algorithm to the quantum harmonic oscillator. Since this
system has an analytic solution it is a good testing ground for checking our simulation is
correct. The potential for the quantum harmonic oscillator can be parametrised as:

V (x) = 1
2µ

2x2, (113)

so that:
HHMC (q,p) =

N−1∑
i=0

p2
i

2 +
N−1∑
i=0

a

[
1
2m

(
qi+1 − qi

a

)2
+ 1

2µ
2q2
i

]
, (114)

where µ2 ∈ R>0.

Typical Configuration Figure 3 shows a typical configuration for the HMC simulation of
the harmonic oscillator. This is just a plot of the position variable at each lattice site taken
from a configuration generated at equilibrium. As the particle moves through imaginary
time in the y axis, its position at each lattice site is specified in the configuration, and this
gives the path for the particle.

22

−1 0 1 2

0

20

40

60

80

100

x

La
tt

ic
e

Si
te

Figure 3. Typical configuration for the harmonic oscillator with µ2 = 1,m = 1 on a lattice of
N = 100 sites at spacing a = 1.

Mean Square Position The first quantity we calculate is the mean square position which
for the statistical mechanical system is 〈x2〉, and corresponds to 〈0| x̂2 |0〉 for the quantum
mechanical system. For the discrete quantum theory, this quantity can be calculated exactly
for an imaginary time lattice of spacing a and size N to be:

〈x2〉 = 1

2µ
(
m+ a2µ2

4

) 1
2

(
1 +RN

1−RN

)
, (115)

where:

R = 1 + a2µ2

2m − aµ√
m

(
1 + a2µ2

4m

) 1
2

, (116)

see [11], [14], [12] or appendix B for a full derivation of equation 115. Running the HMC
simulation at a range of lattice spacings we obtain the results in figure 4. The errors grow as
we approach the continuum limit, which is due to the fact that for smaller lattice spacings
the exponential and integrated autocorrelation times increase, so we save samples at a lower
frequency and hence for a fixed number of generated configurations we have less samples, so
by equation 94 the error is larger. Alternatively, for larger integrated autocorrelation times,
the error will be larger by equation 101. To within error bars, the simulation results in figure
4 show excellent agreement with theory.

Energy Levels In order to calculate the ground state energy of the system we use the virial
theorem as discussed in section 2.1.1. Applied to the harmonic potential and remembering

23

0 0.2 0.4 0.6 0.8 1

0.46

0.48

0.5

a

〈x2〉

Measured Values
Discrete Theory

Figure 4. Relationship between lattice spacing and expectation of position squared for the
harmonic oscillator with µ2 = 1,m = 1. Measurements were made on a N = 100 site lattice
for a range of lattice spacings a.

that measurements of moments 〈xp〉 correspond to quantum expectations in the ground
state, the virial theorem gives:

E0 = µ2 〈x2〉 . (117)
Of course when µ2 = 1 the calculated values for the ground state energy are the same as
those for 〈x2〉 in figure 4, however figure 5 shows the ground state energy on a larger lattice,
with the accompanying discrete and continuum theory results for comparison. Here again,
there is excellent agreement with theory.

As a → 0 and we approach the continuum limit, we see that E0 approaches the value of 1
2

which is given by the continuum formula for the energy levels of a harmonic oscillator:

En = µ√
m

(
n+ 1

2

)
, (118)

when µ2 = 1,m = 1 and n = 0.

To calculate the first excited state energy we use the correlation functions as described in
section 2.1.1. In the statistical lattice system equation 41 becomes:

〈x0xj〉
〈x0x0〉

= e−(E1−E0)ja (119)

where j indexes a lattice site and a is the lattice spacing. To increase statistics for the corre-
lation function as calculated on any lattice configuration, we may utilise periodic boundary

24

0 0.2 0.4 0.6 0.8 1

0.46

0.48

0.5

Lattice Spacing a

En
er

gy

Measured Ground State Energies
Ground State Discrete Theory

Ground State Continuum Theory

Figure 5. Ground state energies for the harmonic oscillator with µ2 = 1,m = 1 on a lattice of
N = 100 sites for a range of lattice spacings a.

conditions and take x0xj = ∑N−1
n=0 xnxn+j. The correlation function is shown in figure 6a

and by fitting a log-linear plot as in figure 6b for an appropriate range, we can measure the
gradient and hence calculate ∆E = E1−E0. Statistical fluctuations occur in the correlation
function for larger values of j, so it is important to fit the function in the range for which
it is linear. In fact, for the harmonic oscillator through the ladder operators â and â† and
the identity x̂ ∼ â+ â†, the only non-vanishing term in the sum in equation 40 will be when
n = 1 and so it is valid to fit the correlation function for small values of j. To calculate E1
we simply subtracted the ground state energy, as calculated via the virial theorem above,
from the energy gap ∆E. Values for E1 at a range of lattice spacings are shown in figure
7. Although the values tend towards the continuum result for small lattice spacings, clearly
there is a serious divergence from the discrete theory at larger lattice spacings. This diver-
gence is likely due to the theoretical result we are using, that states that for the discrete
lattice at spacing a, the harmonic oscillator energy eigenvalues are given by [11]:

En =
(
n+ 1

2

)
µ

√
1 + a2µ2

4 . (120)

Equation 120 clearly has no dependence on the lattice size N , whereas our calculation of E1
has an explicit dependence on N through the virial theorem we used to calculate E0 and
equation 206. At this point we suggest reserving investigations into the reconciliation of
these results for future work.

25

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

Lattice Site j

C
or

re
la

tio
n

Fu
nc

tio
n

(a) Correlation function.

0 10 20 30 40
10−5

10−4

10−3

10−2

10−1

100

Lattice Site j

C
or

re
la

tio
n

Fu
nc

tio
n

(b) Semi-log plot of correlation func-
tion.

Figure 6. Correlation between lattice site variables as function of their separation j for the
harmonic oscillator with m = 1, µ = 1 on a N = 1000 site lattice at spacing a = 1.

0 0.2 0.4 0.6 0.8 1
1.4

1.5

1.6

1.7

Lattice Spacing a

En
er

gy

Measured values for first excited state.
First Excited State Discrete Theory

First Excited State Continuum Theory

Figure 7. First excited state energies for the harmonic oscillator with µ2 = 1,m = 1 on a
lattice of N = 100 sites for a range of lattice spacings a.

26

Ground State Probability Density Function Our method for measuring the density
function of the ground state follows that of [11]. We discretise position into K bins of size
∆x. On any given configuration we may then bin the position coordinate at each lattice site
and create a histogram. Normalising the histogram gives the probability mass density for
finding the particle in any interval [x, x+ ∆x] and as ∆x→ 0, this becomes the probability
density function that is the modulus squared of the wave function. Since we know that
measurements made in our simulation correspond to ground state expectation values, this
density function is that of the ground state. It can be shown (see appendix B or [11]) that for
the discrete quantum harmonic oscillator, the ground state density function is given exactly
by:

|ψ (x) |2 =
(√

5
2π

) 1
2

exp
(
−
√

5
2 x2

)
, (121)

when m = 1, µ2 = 1 and with a lattice spacing of a = 1, which should be contrast with the
continuum result when a→ 0:

|ψ (x) |2 = 1√
π

exp
(
−x2

)
. (122)

Plots of the density functions for the discrete and continuum cases are shown in figure 8,
along with the simulation results at the given parameters. There is a divergence from the
continuum result which is due to the finite lattice spacing of a = 1 in this simulation. As
a → 0 the discrete theory and simulation results will converge on the continuum ground
state density function. To within error bars there is excellent agreement of our results with
the discrete theory.

4.1.2 Quantum Anharmonic Oscillator

Since the anharmonic oscillator does not have an analytic solution for the properties we wish
to calculate, it is a good first application of our HMC simulation for calculations we do not
already know the answer to. Rather than use the more common form of the anharmonic
quartic potential:

V (x) = 1
2mµ

2x2 + λx4, (123)

where µ2 ∈ R and λ ∈ R>0, we use the parameterisation:

V (x) = λ
(
x2 − f 2

)2
, (124)

with λ ∈ R>0 and f 2 ∈ R. This form of the potential has the advantage that its zeros
coincide with its minima at x = ±f when f > 0, which can be seen in figure 9 that
illustrates the symmetric double well structure of the system. Since equation 124 is equivalent
to equation 123 up to the additive constant λf 4, the Euclidean action and consequently
the HMC Hamiltonian for the system is the same up to the additive constant λf 4. The
constant in the Hamiltonian vanishes when we take its derivatives in Hamilton’s equations,
and any constant term in the action amounts to rescaling the path integral in equation 1

27

−4 −2 0 2 4

0

0.2

0.4

0.6

x

|ψ(x)|2

Measured Values

Discrete Theory

Continuum Theory

Figure 8. Continuum, discrete and measured ground state density functions for the harmonic
oscillator with µ2 = 1,m = 1 on a lattice of N = 100 sites at spacing a = 1.

by a complex exponential factor, which will therefore vanish when we take the magnitude
to get the probability, so this re-parameterisation of the potential is valid. Of course, this
re-parameterisation will have the effect of trivially rescaling the energy eigenvalues of the
system by the additive constant λf 4.

The HMC Hamiltonian for this system is given by:

HHMC (q,p) =
N−1∑
i=0

p2
i

2 +
N−1∑
i=0

a

[
1
2m

(
qi+1 − qi

a

)2
+ λ

(
q2
i − f 2

)2
]
. (125)

Typical configuration Figure 10 shows a typical configuration for the HMC simulation
of the anharmonic oscillator. As the particle moves up the y axis in imaginary time, we
now observe the tunnelling behaviour between different lattice sites in different minima we
expect for a quantum double well system, that is the particle is either localised in one well
at f , or the other at −f and is very rarely outside of these regions.

Energy Levels In order to calculate the ground state energy we proceed with the same
method we used in the case of the harmonic oscillator in section 4.1.1 and use the virial
theorem of equation 33 which gives:

E0 = 3λ 〈x4〉 − 4λf 2 〈x2〉+ λf 4. (126)

28

-f 0 f

0

x

V (x)

Figure 9. Anharmonic oscillator double well potential with the parameterisation V (x) =
λ
(
x2 − f2)2.

−2 −1 0 1 2

0

20

40

60

80

100

x

La
tt

ic
e

Si
te

Figure 10. Typical configuration for the anharmonic oscillator with λ = 1, f2 = 4,m = 1 on a
lattice of N = 100 sites at spacing a = 1.

29

To calculate the first excited state we also follow the same method as we did for the harmonic
oscillator in fitting the correlation function. Since the ladder operators do not exist with
the same raising and lowering functionality for the anharmonic oscillator, it is important
to fit the correlation function for larger j separations for which the log-linear plot of the
correlation function becomes linear, but before the statistical noise. Plots of the correlation
function for the harmonic oscillator are given in figures 11a and 11b, where we can see the
decay is much slower than in the harmonic case.

The results of the HMC simulation of the anharmonic oscillator for the ground and first
excited states are shown in figure 12 for a range of values of f 2. Since there is no analytic
solution to the anharmonic oscillator, the continuum values in figure 12 are from [15] where
approximations of the continuum energy eigenvalues are given. Our results follow the same
pattern as those given in [15], however since we are working with finite lattice spacings we
should expect some divergence. The deviation from the approximated continuum values for
larger values of f 2 at the chosen lattice spacing, matches the deviation given in [13] where
the Metropolis algorithm is used for the same calculations.

Ground State Probability Density Function To measure the ground state probability
density function we follow the same method as we did for the harmonic oscillator. The results
can be seen in figure 13 where we now observe the double Gaussian type behaviour we would
expect; two regions of high probability around the minima of the potential separated by a
region of lower probability, i.e. a high probability of finding the particle in either well and
low probability of finding it anywhere else.

4.1.3 Isolated Modes

In figure 10 we saw the tunnelling behaviour displayed by the anharmonic oscillator as the
particle moved between the minima of the symmetric potential wells at x = ±f , along its
path in imaginary time. In figure 14 we investigate the effect of increasing the value of f 2,
which increases the distance between the centres of the wells and increases their depth. We
can clearly see that even a small increase in f 2 results in less tunnelling along the particle’s
path in imaginary time on a given configuration, and lattice variables tend to cluster together
in one well or the other, due to the coupling term in the Euclidean action. This in itself is
not a problem; measurements made on a configuration where more lattice variables lie in one
potential well than the other, do contribute a bias value to the statistical average in equation
44, for quantities such as 〈x〉. However, as long as subsequently generated configurations
upon which we make measurements are uncorrelated, and the lattice variables xi have been
able to tunnel between the minima at ±f , these bias contributions will cancel.

We found that for f 2 ≥ 2 and keeping λ = 1 fixed, the lattice variables xi had difficulty mov-
ing between the minima of the potential on proposal configurations, and hence subsequently
generated configurations were highly correlated. In our simulation this is the problem of iso-
lated modes; when lattice variables xi on subsequent configurations in the HMC algorithm
have been unable to move out of the well they were in in the original configuration, and

30

0 50 100 150 200 250 300 350 400 450 500
−0.2

0

0.2

0.4

0.6

0.8

1

Lattice Site j

C
or

re
la

tio
n

Fu
nc

tio
n

(a) Correlation function.

0 50 100 150 200 250 300 350

10−3

10−2

10−1

100

Lattice Site j

C
or

re
la

tio
n

Fu
nc

tio
n

(b) Semi-log plot of correlation function.

Figure 11. Correlation between lattice site variables as function of their separation j for the
anharmonic oscillator with m = 1, λ = 1, f2 = 1 on a N = 1000 site lattice at spacing a = 1.

31

−1 0 1 2 3 4 5

2

4

6

f 2

En
er

gy

Continuum E0 [15]
Continuum E1 [15]

Measured E0

Measured E1

Figure 12. Ground and first excited state energies for the anharmonic oscillator with λ =
1,m = 1 on a lattice of N = 1000 sites at spacing a = 0.1. Values are shown for a range of f2

values.

−4 −2 0 2 4

0

0.1

0.2

0.3

0.4

0.5

x

|ψ(x)|2

Figure 13. Measured ground state density function for the anharmonic oscillator with λ =
1, f2 = 1,m = 1 on a lattice of N = 100 sites at spacing a = 1.

32

−1 −0.5 0 0.5 1 1.5

0

20

40

60

80

100

x

La
tt

ic
e

Si
te

(a) f2 = 0.5

−1.5 −1 −0.5 0 0.5 1 1.5

0

20

40

60

80

100

x

La
tt

ic
e

Si
te

(b) f2 = 1

−2 −1 0 1 2

0

20

40

60

80

100

x

La
tt

ic
e

Si
te

(c) f2 = 2

Figure 14. Typical configurations for a anharmonic oscillator with λ = 1,m = 1 on a lattice
of N = 100 sites at spacing a = 1 when varying f2.

33

into the other well in the proposal configuration. This problem manifests itself in various
ways in our simulation. One good indicator that we have had a tunnelling problem are
non-zero (to within the error bar) estimates of 〈x〉, since by symmetry the particle’s mean
position should be zero. Another indicator of a tunnelling problem is an asymmetric ground
state density function |ψ (x) |2, that appears to favour the particle being in one well more
than the other. These anomalous results are due to the fact that we may be stuck gener-
ating configurations where more lattice variables are in one minima than the other. If on
a given configuration more lattice variables are in one minima than the other, then since
the variables have difficulty tunnelling, subsequent configurations will also have this same
bias and so estimates of 〈x〉 and |ψ (x) |2 will be wrong. It should however be noted that it
is possible to have estimates of 〈x〉 close to zero and symmetric density functions |ψ (x) |2
and still have highly correlated configurations resulting from a tunnelling problem. This can
arise if initially for a configuration in equilibrium, approximately half the lattice variables
are trapped in one well and half in the other, if there is no tunnelling of these lattice vari-
ables on subsequently generated configurations, then this will lead to a symmetric result,
however the subsequent configurations will be highly correlated since we are not exploring
the entire configuration space. Typically measuring the value of the ground state energy E0
and energy gap ∆E will not necessarily give an indication of a tunnelling problem for the
symmetric anharmonic potential. In the case of E0 as calculated via the virial theorem in
equation 126, up to the additive constant the value depends only on the second and fourth
moments of the position, and is therefore insensitive to the change of sign that is associated
with the tunnelling between symmetric wells. As long as configurations are measured at
equilibrium values of 〈x2〉 and 〈x4〉 will be correct but with underestimated errors. For the
energy gap, due to the fact that lattice variables tend to cluster in the wells because of the
coupling term in the Euclidean action, most terms in the correlation function of the form
xnxn+j will also be insensitive to the change of sign for small values of j, and so the effect
of the tunnelling problem on the energy gap will be small. Of course we can also measure
autocorrelation times, which should be very large if these correlated configurations persists
throughout the simulation; the inaccuracy in our result would then manifest itself as the
error in equation 101. In practice however, it is likely that the measured integrated and
exponential autocorrelation times will significantly underestimate the correlations between
subsequent configurations which result from the tunnelling problem, and indeed this is what
we found in our simulation. To see why this is the case, note that if all lattice variables
are stuck in the same well with no tunnelling, then the system knows nothing of the other
well, and so measured integrated and exponential autocorrelation times will be much less
than than they should be. For the situation when 〈x〉 is close to zero but there is very little
tunnelling, so there are approximately even numbers of lattice variables in each well, but
each variable stays trapped in its well on subsequent generated configurations, the system
will not be exploring the whole configuration space, and so the measured integrated and
exponential autocorrelation times will be underestimated. We can also observe the differ-
ence in the equilibrium lattice configurations generated at the start (after the equilibration
period) and end of the simulation, to determine qualitatively how bad the correlation really
is, and this is shown in figure 15 for a range of f 2 values to demonstrate how the isolated
modes become a problem.

34

−1.5 −1 −0.5 0 0.5 1 1.5

0

20

40

60

80

100

x

La
tt

ic
e

Si
te

(a) f2 = 1

−2 −1 0 1 2

0

20

40

60

80

100

x
La

tt
ic

e
Si

te

(b) f2 = 2

−2 −1 0 1 2

0

20

40

60

80

100

x

La
tt

ic
e

Si
te

(c) f2 = 3

−2 −1 0 1 2

0

20

40

60

80

100

x

La
tt

ic
e

Si
te

(d) f2 = 4

Figure 15. Typical first equilibrium configurations in green, and final configurations after a
subsequent 100000 iterations of the HMC algorithm in red, for anharmonic oscillator with
λ = 1,m = 1 at a range of f2 values on a lattice of N = 100 sites at spacing a = 1.

35

We can see that on a typical simulation the first and last equilibrium configurations when
f 2 = 1 and f 2 = 2 look to be uncorrelated, suggesting there has been some tunnelling of
the lattice variables xi in both simulations. At f 2 = 3 there appears to be a correlation
between the first and last configurations. Finally at f 2 = 4, it appears as if there have been
very few instances where lattice variables have been able to tunnel throughout the entire
simulation of 100000 generated configurations. At f 2 = 4, most lattice variables in the final
configuration are in the same well they were in in the initial equilibrium configuration 100000
HMC iterations earlier, these configurations are therefore highly correlated.

When f 2 = 1, 〈x〉 = 0.000760909 ± 0.000930068 so to within one error bar the value is
correct, we also have the ground state density function |ψ (x) |2 shown in figure 16a which is
symmetric, so tunnelling of lattice variables between configurations for which we made mea-
surements, has not been a problem. In the case at f 2 = 2, 〈x〉 = −0.116344±0.00317193 and
the measured density function |ψ (x) |2 is shown in figure 16b. Clearly this result is wrong;
the error is two orders of magnitude smaller than the correction needed in the estimate, and
the density function is asymmetric. So, despite the fact that when f 2 = 2 the first and last
configurations in the trajectory look to be fairly uncorrelated, there has been a tunnelling
problem in subsequent measured configurations generated in the simulation, that have lead
to a bias where more lattice variables have been stuck on the well at −

√
2. For f 2 = 3,

〈x〉 = 0.618997 ± 0.00135925 with the density function |ψ (x) |2 in figure 16c, suggesting
the same problem has occurred as when f 2 = 2 except now more lattice variables have been
stuck in the minima at

√
3 on subsequently generated configurations. However, when f 2 = 4,

〈x〉 = −0.102023±0.000516574 with the density function |ψ (x) |2 in figure 16d; these results
are respectively closer to zero and more symmetric than when f 2 = 3. From figure 15d it
looks as if there has been a severe tunnelling problem in the system when f 2 = 4, with only a
few lattice variables tunnelling in the entire simulation. The reason for this seemingly better
estimate is that the initial configuration had a more even distribution of lattice variables
at ±f , and so despite the fact that there is very little tunnelling, we get a better estimate
of 〈x〉 and a more symmetric density function |ψ (x) |2. The errors in the above estimates
where we have identified a tunnelling problem, are of course all too small due to the high
correlation between measured results, and our naive method of calculating errors. In general
we found that these lucky cases, when there is an even distribution of lattice variables in the
wells at ±f were fairly common in our simulation. This is due to the fact that we used the
initial conditions of uniformly distributing the lattice variables on the interval [−1, 1], so by
the the end of the equilibration period approximately equal proportions of the variables will
have moved into the wells at ±f , via the molecular dynamics in the HMC iterations. One
method to avoid this problem is to start the simulation with all lattice variables in one well,
then if there is a severe tunnelling problem in the simulation we will find that 〈x〉 ≈ ±f
depending on which well we chose, and a ground state density that is entirely asymmetric.
This method enables us to identify cases when isolated modes are a severe problem for the
system.

It should be noted here that the correlation between subsequent configurations is not due
to proposals being rejected, although this would lead to an increase in correlation between
measured configurations. Even though figure 15 shows only the first and last equilibrium
configurations in each simulation, we can see that the lattice variables have moved about

36

−4 −2 0 2 4

0

0.1

0.2

0.3

0.4

0.5

x

(a) f2 = 1

−4 −2 0 2 4

0

0.2

0.4

0.6

0.8

x

(b) f2 = 2

−4 −2 0 2 4

0

0.5

1

x

(c) f2 = 3

−4 −2 0 2 4

0

0.2

0.4

0.6

0.8

1

1.2

x

(d) f2 = 4

Figure 16. Ground state density functions when varying f2 for the simulations corresponding
to figure 15.

37

within the minima they are stuck in. The problem is that the molecular dynamics which
evolves the configuration q to the proposed state, evolves q in an energy landscape given by
the potential in the HMC Hamiltonian, that is the Euclidean action. This action places each
lattice variable in its own double well potential, but also couples it to its nearest neighbours,
and so for a deep and wide enough potential e.g. when f 2 = 4, the probability that the
randomised momenta p are large enough to move the lattice variables between the wells is
very small, and the molecular dynamics will tend to propose update configurations with each
lattice variable in the same well it started in. The proposed configurations will still likely
be accepted since they are in a region of low Euclidean action, and therefore have a high
probability of acceptance.

An obvious but naive solution to the problem of isolated modes in our quantum system, is
to simply run a much longer simulation and take samples at a lower frequency. For a system
where some tunnelling does occur, such as when f 2 = 2 this may be feasible, since the
probability of a lattice variable tunnelling is non-negligible, so if we wait for a long enough
time between measurements, our configurations will become uncorrelated. However, for a
system where the tunnelling is a much greater problem, such as when f 2 = 4, figure 15d
suggests in 100000 configuration updates, only a few tunnelling events occurred. Clearly in
this case running longer simulations at a lower sampling frequency will be infeasible. In the
next section we explore a method to deal with this problem more efficiently.

4.2 Accelerated Dynamics (Tempering)

4.2.1 Tempering in HMC

We have seen above that HMC much like other MCMC methods [3] has an issue in that it
struggles to sample from isolated modes in a probability distribution, such as the wells in the
double well potential. To solve this problem various methods, such as parallel tempering [27],
[28], simulated tempering [29], tempered transitions [7] and annealed importance sampling
[30] have been developed where one samples according to a distribution that is more diffuse
than the target distribution that has the isolated modes. These methods work by varying
the temperature T in the canonical distribution of equation 66, so if T = 1 gives our target
distribution, increasing T will give a more diffuse one. In HMC we can incorporate tempering
directly into the molecular dynamics which proposes update states, and here we follow the
method given in [3] and [7].

In order to implement tempering on a leapfrog trajectory that is used to propose an update
in the HMC algorithm, we follow the symmetric method given in [3]. Defining the tempering
parameter α as a number close to, but larger than one, in the leapfrog update step we multiply
each momentum variable before the first half step (equation 51) and after the second half
step (equation 53) by

√
α during the first half of the trajectory, and then in the second half of

the trajectory replace this multiplication with division by
√
α. If there is an odd number of

steps in the leapfrog trajectory, then on the middle step before the first half step in momenta

38

we multiply by
√
α, and on the second half step we do a corresponding division, so that the

number of multiplications and divisions by
√
α is equal.

With tempering introduced the leapfrog equations 51, 52 and 53 for a small time step ε, to
go from t to t+ ε in position and momentum become:

pi (t+ ε/2) =
√
αpi (t)− ε/2

∂U

∂qi
(q (t)) (127)

qi (t+ ε) = qi (t) + ε
∂K

∂pi
(p (t+ ε/2)) (128)

pi (t+ ε) =
√
α

(
pi (t+ ε/2)− ε/2∂U

∂qi
(q (t+ ε))

)
, (129)

for steps in the first half of the trajectory and:

pi (t+ ε/2) = 1√
α
pi (t)− ε/2

∂U

∂qi
(q (t)) (130)

qi (t+ ε) = qi (t) + ε
∂K

∂pi
(p (t+ ε/2)) (131)

pi (t+ ε) = 1√
α

(
pi (t+ ε/2)− ε/2∂U

∂qi
(q (t+ ε))

)
, (132)

for steps in the second half of the trajectory, with the possible exception that for an odd
number of leapfrog steps, on the middle step:

pi (t+ ε/2) =
√
αpi (t)− ε/2

∂U

∂qi
(q (t)) (133)

qi (t+ ε) = qi (t) + ε
∂K

∂pi
(p (t+ ε/2)) (134)

pi (t+ ε) = 1√
α

(
pi (t+ ε/2)− ε/2∂U

∂qi
(q (t+ ε))

)
. (135)

4.2.2 Volume Preservation Under Tempering Dynamics

Just as in section 3.2.1 we still require that volume is preserved by the leapfrog integration
scheme, since this is required for detailed balance even with tempering present. The argument
carries over from the non-tempered case, however on any given leapfrog step the determinant
of the Jacobian will not necessarily be 1 and therefore volume will not be preserved; it will
only be the transformation for the whole trajectory that preserves volume. To see why this is
the case note that as before we can define the mappings on phase space Tp1 (ε, α) : (q,p)→
(q′,p′), Tq (ε) : (q,p) → (q′,p′) (this is the same map as in the non-tempered case) and

39

Tp2 (ε, α) : (q,p)→ (q′,p′) such that:

Tp1 (ε, α)
(
q
p

)
=
(

q√
αp− ε∇qU (q)

)
(136)

Tq (ε)
(
q
p

)
=
(
q + ε∇pK (p)

p

)
(137)

Tp2 (ε, α)
(
q
p

)
=
(

q√
α
(
p− ε∇qU (q)

)) , (138)

where we have now had to define three maps, due to the fact the tempering multiplication
happens before and after the half steps in the momenta, so the forms of the half steps in
momentum in the leapfrog equations are no longer the same. Having defined these mappings
we can calculate their Jacobians to be:

Jp1 = det
(

δij 0
−ε∂qi∂qjU (q)

√
αδij

)
= α

d
2 (139)

Jq = det
(
δij ε∂pi∂pjK (p)
0 δij

)
= 1 (140)

Jp2 = det
(

δij 0
−
√
αε∂qi∂qjU (q)

√
αδij

)
= α

d
2 , (141)

remembering that we are in a 2d-dimensional phase space. Let us assume that we have
an even number of l leapfrog steps in our trajectory. A leapfrog step in the first half of
the trajectory can be written in terms of the above mappings as T (α, ε) = Tp2 (α, ε/2) ◦
Tq (ε) ◦ Tp1 (α, ε/2), which from the compositions of the above maps will have Jacobian αd.
A leapfrog step in the second half trajectory can be written as T (1/α, ε) = Tp2 (1/α, ε/2) ◦
Tq (ε) ◦ Tp1 (1/α, ε/2) which will have Jacobian 1/αd. The mapping which via the leapfrog
equations takes us from the start to the end of the trajectory can be written as:

traj (α, ε, l) = [T (1/α, ε)]
l
2 ◦ [T (α, ε)]

l
2 , (142)

which using the Jacobians of the mappings in the composition will have Jacobian Jtraj =[
αd
] l

2
[
1/αd

] l
2 = 1 and so we have preservation of volume on phase space. Note that for an

odd number of steps l we would have traj (α, ε, l) = [T (1/α, ε)]
l−1
2 ◦ Tp2 (1/α, ε/2) ◦ Tq (ε) ◦

Tp1 (α, ε/2) ◦ [T (α, ε)]
l−1
2 , however the factors of alpha will still cancel in the Jacobian and

so volume is still preserved.

The multiplication of the momenta variables by
√
α will increase the value of the HMC

Hamiltonian HHMC , so that if at the beginning of the trajectory HHMC has a typical value
for the canonical distribution when T = 1 (which it will if taken at equilibrium), then after
the multiplication HHMC will have a typical value for a higher T ; this is how the temperature
change arises from the dynamics. As the momenta p are increased there will be an increase
in the kinetic term K (p), which will lead to an increase in HHMC (q,p) = K (p) + U (q).
However, successive leapfrog steps will distribute the increase in HHMC between K and U [3],

40

this gives a more diffuse distribution for q than the original one at T = 1. In fact, following
lots of tempered steps q values can be reached which would have been very improbable in
the target distribution. In the second half of the trajectory divisions by

√
α return HHMC

to values for the original typical distribution at T = 1, but the q may now be in a different
region of the probability distribution than before, so we may be able to move between modes
of the distribution separated by regions of low probability.

Applying this idea to our quantum mechanical double well potential, we remember that
our variables of interests are the lattice configurations, i.e. q ≡ x = (x0, . . . xN−1) and the
problem is that for a deep and wide enough well i.e. f 2 ≥ 2, the individual xi variables have
difficulty tunnelling between the wells when we generate a proposal configuration, this leads
to a large correlation between subsequent samples and hence a bad estimate on observables.
We have the HMC Hamiltonian for the double well system given by equation 125 where the
mass term in the action couples nearest neighbour variables on the lattice. Ignoring the
mass term temporarily will give the Hamiltonian for a system of N uncoupled anharmonic
oscillators, each moving in its own double well potential, each with momenta pi and position
qi. As we evolve the system via the leapfrog integration, we can imagine that by multiplying
each pi by

√
α we may increase the kinetic energy of each oscillator enough so it can move

into the other well. This picture is somewhat naive since it neglects the coupling term in
the Hamiltonian, which means the harmonic oscillator is actually moving in a more complex
potential where each xi is coupled to its nearest neighbours. Nevertheless, this intuitive
picture provides a conceptual idea of how tempering would work in our lattice system.
Alternatively we can think of the entire configuration x as being in an energy landscape
given by the Euclidean action term in the Hamiltonian, where the isolated modes consist of
the regions where different xi move between the wells in the potential. By increasing the
Hamiltonian through multiplication of the momentum variables as described above we may
be able to move between these regions of the landscape, which correspond to the isolated
modes in the distribution. Before the first tempered step we would expect each xi variable
to be localised around ±f . As we begin to make tempered steps in the molecular dynamics
trajectory, we expect to see the variables xi spread out and move far away from the potential
minima by the time we reach half way through the trajectory. Then as we begin the divisions
in the second half trajectory we should see the variables move back towards the minima at
±f , however they may move back to a different minima to the one they started in.

In [3] it is argued that for large α, HHMC (q′,p′) will typically be much larger thanHHMC (q,p),
so the probability of accepting the proposed configuration via the Metropolis step will be
small. Here lies a key difficulty in tempering, one needs to provide a large enough α so that
the Hamiltonian increases enough on the trajectory such that the system is able to move
between the isolated modes, however at the end of the trajectory the Hamiltonian needs to
have been reduced again to a value similar to that of where it started, if it is to have any
chance of being accepted in the Metropolis update. There is a further complication in that
increasing the number of leapfrog steps may no longer increase the acceptance rate, since by
doing more steps in the leapfrog algorithm we are in effect performing more multiplications
and divisions by

√
α and so doing more tempering, which may give an even larger Hamilto-

nian at the end of the trajectory. In principle, a slightly lower acceptance rate in a simulation
with tempered HMC than in normal HMC may not be a problem. If one could show that

41

despite the fact that less proposals are accepted, the proposals that are (in tempered HMC)
are highly uncorrelated then if the number of accepted proposals is still reasonably high, we
may get better estimates on our observables than in the non-tempered case, where highly
correlated samples would lead to larger errors.

The appeal of tempering as an optimization of HMC is that if it could be successfully
implemented in our simulation for a fixed number of leapfrog steps, it would in effect be cost
free. If we were able to find a system in which tunnelling was infrequent or not occurring
at all for normal HMC with a number of leapfrog steps l in our simulation, then introduce
the tempering parameter to the same system and observe tunnelling for the same number of
leapfrog steps l without a significant drop in the acceptance rate, the only cost incurred would
have been the multiplication of the momenta variables, which is negligible in comparison to
the cost of generating more configurations until the system moves between the modes.

4.2.3 Tempered Simulation Results

After implementing tempered dynamics in our simulation of the anharmonic oscillator, we
found that rather than observing better estimates for 〈x〉 and the ground state density
function |ψ (x) |2, as well as a qualitative decorrelation between subsequently generated con-
figurations as in figure 15, instead the acceptance rate of the algorithm quickly dropped to
zero as we increased α. To investigate why this is the case, we worked with an anharmonic
potential where λ = 1, f 2 = 4 and m = 1 on a lattice of N = 100 sites at a spacing of
a = 1, since we know this system exhibits the issues related to isolated modes, in that the
tunnelling probability of lattice sites is very low, see figure 15d. We first evolved our sys-
tem to an equilibrium configuration via non-tempered dynamics, then from that equilibrium
configuration applied tempering dynamics in a leapfrog trajectory for a range of α values.
We evolved this same initial configuration for l = 200 leapfrog steps of size ε = 0.005 so
that εl = 1, and were able to observe the evolution of the Hamiltonian along the trajectory
for the range of α values. Due to the complex nature of the potential the system is in, it is
not clear how what value of α will induce tunnelling in the lattice variables xi, however, by
observing the evolution of the configuration at half way through the trajectory we will be
able to see if the xi have been able to move out of their minima.

Figures 17, 18 and 19 show the evolution of the Hamiltonian and the same initial equilibrium
configuration under the molecular dynamics, for tempering parameters α = 1.001, α = 1.01
and α = 1.05 respectively. In each case during the first half of the trajectory we see the
Hamiltonian grow, corresponding to the multiplications by

√
α, then during the second half

of the trajectory it shrinks, due to the corresponding divisions by
√
α. In figure 17a with

α = 1.001, we see the Hamiltonian returns to approximately the same region it started in,
and indeed in this example there is actually an overall decrease such that for ∆HHMC =
HHMC (q′,p′) − HHMC (q,p), ∆HHMC = −0.071, so the proposed configuration will be
accepted with certainty via the Metropolis update. However, we can see from the plots of
the configuration evolution in figure 17b that at the centre of the leapfrog trajectory, where
the Hamiltonian is at its maximum value, the lattice variables have been unable to leave

42

0 50 100 150 200

198

200

202

204

206

208

∆HHMC = −0.071

Leapfrog Steps

HHMC

(a) Evolution of Hamiltonian along the leapfrog trajectory.

−2 −1 0 1 2

0

20

40

60

80

100

x

La
tt

ic
e

Si
te

(b) Evolution of the configuration with initial configuration in green, the configuration after 100
leapfrog steps in red and at the end of the trajectory (the proposal configuration) in blue.

Figure 17. Evolution of Hamiltonian and configuration along leapfrog trajectory for tempering
parameter α = 1.001

43

0 50 100 150 200

200

250

300

350

400

∆HHMC = 16.005

Leapfrog Steps

HHMC

(a) Evolution of Hamiltonian along the leapfrog trajectory.

−3 −2 −1 0 1 2 3

0

20

40

60

80

100

x

La
tt

ic
e

Si
te

(b) Evolution of the configuration with initial configuration in green, the configuration after 100
leapfrog steps in red and at the end of the trajectory (the proposal configuration) in blue.

Figure 18. Evolution of Hamiltonian and configuration along leapfrog trajectory for tempering
parameter α = 1.01

44

0 50 100 150 200

0

0.5

1

·105

∆HHMC =
616.047

Leapfrog Steps

HHMC

(a) Evolution of Hamiltonian along the leapfrog trajectory.

−5 0 5

0

20

40

60

80

100

x

La
tt

ic
e

Si
te

(b) Evolution of the configuration with initial configuration in green, the configuration after 100
leapfrog steps in red and at the end of the trajectory (the proposal configuration) in blue.

Figure 19. Evolution of Hamiltonian and configuration along leapfrog trajectory for tempering
parameter α = 1.05

45

the wells they were initially localised in and that at the end of the trajectory, no tunnelling
has occurred on the proposed configuration since all lattice variables are in the same wells
they started in. Figure 18 shows results for that same initial equilibrium configuration, but
now on a tempered trajectory with α = 1.01. However, now there is an increase in the
Hamiltonian with ∆HHMC = 16.005 which corresponds to an acceptance probability of the
order of 10−7 which is incredibly low. The issue that makes tempering as suggested in [3] and
[7] ineffective in our lattice system lies in this result. In the configuration evolution in figure
18b we can see as in the tempered case for α = 1.001, there has still been no tunnelling when
α = 1.01, despite the larger increase in HHMC that occurs on the trajectory in figure 18a.
∆HHMC on the trajectory is however now too big, and typical proposals will not be accepted.
So, even for tempering parameters that result in the Hamiltonian being too large at the end
of the trajectory for the proposed configuration to be accepted, the lattice variables have
still been unable to move between the wells. To see that the intuition around the effects of
tempering on our simulation were valid, that is we can move the lattice variables xi between
the minima of the potential for a large enough α, observe figure 19. Here we can see that
with α = 1.05, the Hamiltonian increases massively in figure 19a and indeed on the middle
leapfrog step in figure 19b, the lattice variables have been able to move well out of the wells
they were localised in on the initial configuration. We can also see that at the end of the
trajectory, as lattice variables are moved back towards the wells during the divisions by

√
α,

lattice variables that were initially in one well have in some cases been brought back down
into the other well, so we have induced tunnelling of the lattice variables. However, with
α = 1.05, ∆HHMC = 616.047 which will give an acceptance rate of zero in the simulation.

This tendency for ∆HHMC to be so large that the probability of accepting a proposed
trajectory is always zero for any tempering parameter α that actually induces tunnelling in
the system, is a general problem we found for all tempered anharmonic simulations. In [3] it
is suggested that in order to maintain the effective temperature i.e. the diffuse distribution
at the midpoint of the trajectory and the magnitude of the Hamiltonian at that point, and
reduce the tendency for ∆HHMC to be so large, one should reduce α to α

1
R and increase

the number of leapfrog steps by a factor of R. In practice we found this suggestion had no
effect on the system for which we applied tempered dynamics. The idea of increasing the
number of leapfrog steps until the tempering is successful raises another issue; there is a
computational cost of performing more leapfrog steps. It may be that for a system that has
a low probability of lattice variables tunnelling, the cost of increasing the number of leapfrog
steps outweighs the cost of simply generating more configurations, and waiting for the lattice
variables to tunnel by themselves without tempering, then making measurements at a very
low frequency. So even if tempering was successful in such a scenario, a cost analysis would
be required before one could make any claims about its benefits.

The reason that the example of tempering in [3] was shown to be successful whereas in our
case it has failed, is likely due to the difference in the number of degrees of freedom of the
systems. The example in [3] is for a system of two degrees of freedom, so tempering both
variables with a value of α large enough to move the system between the isolated modes
results in a relatively small increase in the Hamiltonian at the centre of the trajectory,
which means that during the second half of the trajectory the tempered dynamics is able to
decrease the Hamiltonian back into the region it started in. However, in our system we have

46

for a lattice of 100 sites, 100 degrees of freedom. As we have seen, tempering each of these
variables with a value of α large enough to induce tunnelling results in a huge increase of
the Hamiltonian at the centre of the trajectory, due to the fact each variable contributes to
the Hamiltonian, and the tendency for the Hamiltonian not to decrease in the second half
of the trajectory as much as it increased in the first half of the trajectory, for large increases
in the first half of the trajectory, means there is a very low probability of acceptance.

4.2.4 Suggestions for Future Tempering Investigations

A possible solution to the issue of ∆HHMC always being too large on tempered trajectories
that actually induce tunnelling, and a suggestion for future investigations, would be local
tempering. The huge increase that we currently require in the Hamiltonian at the midpoint
of the molecular dynamics trajectory for tunnelling events to occur, and the tendency for
the the Hamiltonian not to decrease as much as it increases for large α value, means the
∆HHMC is too large on the proposed configuration for it to be accepted. This is because our
system has a large number of degrees of freedom, corresponding to the lattice variables, so
tempering all these variables results in much larger changes in the Hamiltonian. However,
if we only applied tempering dynamics to a select few lattice variables, and evolved the
rest of the variables via standard leapfrog molecular dynamics, this might have the effect of
increasing the Hamiltonian for those tempered variables enough locally, that they may move
into another well. Globally however, the Hamiltonian would not have increased as much at
the midpoint of the trajectory, since less variables are being tempered, and so it may have the
ability to return to the range it started in during the divisions in the second half trajectory.
Since tunnelling would only occur with the variables chosen for tempering, one would need
to find a method of selecting lattice sites for tempering, such that throughout the simulation
each lattice site has the possibility of tunnelling on subsequent proposal configurations.
Options for this could be choosing sites systematically or randomly on subsequent iterations
of the HMC algorithm; one would need to show that volume preservation and hence detailed
balance still holds with this method.

5 Conclusion

In the background section we began the report by considering the path integral of quantum
mechanics and showed through discretisation of time and a Wick rotation, that it can be
considered as a canonical partition function on a periodic lattice with continuous position
variables at each lattice site. We went on to discuss the relationship between quantum
and statistical expectation values, and saw how quantum expectation values of operators in
ground state for a large enough lattice, could be calculated via a statistical expectation value
under the canonical distribution.

Since in practice the statistical expectation values cannot be calculated analytically we in-
troduced in the methods section the notion of a Monte Carlo estimate which we could use

47

to approximate these expectation values. We then discussed the Hybrid Monte Carlo algo-
rithm, which was used in the simulation, and explained how this algorithm uses fictitious
momentum variables and Hamiltonian dynamics to propose update states in the simula-
tion. A proof was given that the leapfrog method used to numerically integrate Hamilton’s
equations preserves volume on phase space exactly, and using this fact detailed balance for
the HMC algorithm was also proved. Due to the correlations that can arise between sam-
ples in the Markov chain generated via the HMC algorithm, errors can be underestimated
and we discussed how this can be taken into account via the exponential and integrated
autocorrelation times.

In the results section we applied the HMC algorithm to the cases of the quantum harmonic
and anharmonic oscillators, using it to generate lattice configurations which we then used
to estimate the values of observables in the ground state via the Monte Carlo estimate. We
found here excellent agreement of our results with the discrete theory in the case of the
harmonic oscillator for quantities such as 〈x2〉 and |ψ (x) |2 and discussed the divergence
from the continuum result due to finite lattice spacings. Ultimately the harmonic oscillator
provided a good method for testing the validity of our simulation against theory. Applying
the HMC algorithm to the anharmonic oscillator we were able to obtain the same quantities
for the case of the harmonic oscillator, however, since the anharmonic system is not solvable
analytically, we were only able to compare our estimates of energy eigenvalues E0, E1 to
approximations of the exact results where we found good agreement. More importantly, we
were in the case of the anharmonic oscillator able to identify a problem with isolated modes
in our simulation. We found that for deep and wide enough wells, lattice variables could have
serious difficult tunnelling between wells on subsequently generated configurations, leading
to incorrect estimates in our results for quantities such as 〈x〉 and |ψ (x) |2.

As a potential solution to the problem of isolated modes in our simulation, we investigated the
effect of introducing a tempering parameter α into our simulation, with the aim of increasing
the tunnelling of our lattice variables. It was explained how this tempering parameter is
incorporated directly into the leapfrog integration scheme, and importantly we proved that
volume preservation still holds for tempered dynamics. This is an important proof since
without volume preservation detailed balance would not hold, and so tempering would not
have been a valid modification of the HMC algorithm. Ultimately we found that the presence
of a tempering parameter only had the effect of lowering the acceptance rate of the algorithm,
without desired increase in tunnelling. Through tracking the evolution of the Hamiltonian
and an equilibrium configuration under tempering dynamics for several values of α, we found
that for our system the only values of α for which tunnelling of lattice variables was induced,
were values for which the acceptance rate in the simulation would always be zero; this is
likely due to the large number of degrees of freedom in our lattice system.

It is for the above reasons we can conclude that tempering as applied to our lattice system
does not improve our simulation, and therefore should not be pursued as a solution to the
issues of isolated modes in more complex systems, such as lattice field theories, where the
fact that there are even more degrees of freedom in the lattice systems, will likely lead to
the same problem. Instead, as discussed at the end of the results section, a next step for
tempering as applied to lattice systems should be an investigation into local tempering.

48

Local tempering may have the ability to tunnel a subset of the lattice variables in proposal
configurations, without the zero acceptance probability that has shown to arise for normal
tempering in our simulations.

References

[1] Simon Duane, A.D. Kennedy, Brian J. Pendleton, and Duncan Roweth. Hybrid monte
carlo. Physics Letters B, 195(2):216–222, 1987.

[2] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H.
Teller, and Edward Teller. Equation of state calculations by fast computing machines.
The Journal of Chemical Physics, 21(6), Jun 1953.

[3] Radford Neal. Mcmc using hamiltonian dynamics. Chapman & Hall/CRC Handbooks
of Modern Statistical Methods Handbook of Markov Chain Monte Carlo, Oct 2011.

[4] Radford M. Neal. Bayesian learning for neural networks. Lecture Notes in Statistics,
1996.

[5] Hemant Ishwaran. Applications of hybrid monte carlo to bayesian generalized linear
models: Quasicomplete separation and neural networks. Journal of Computational and
Graphical Statistics, 8(4):779, 1999.

[6] Mikkel N. Schmidt. Function factorization using warped gaussian processes. Proceedings
of the 26th Annual International Conference on Machine Learning - ICML 09, 2009.

[7] Radford M. Neal. Sampling from multimodal distributions using tempered transitions.
Statistics and Computing, 6(4):353–366, 1996.

[8] Wolfgang Bietenholz. Hadron physics from lattice qcd. International Journal of Modern
Physics E, 25(07):1642008, 2016.

[9] Luigi Del Debbio, Haralambos Panagopoulos, and Ettore Vicari. Îÿ dependence of su(n)
gauge theories. Journal of High Energy Physics, 2002(08):044–044, 2002.

[10] Luigi Del Debbio, Gian Mario Manca, and Ettore Vicari. Critical slowing down of
topological modes. Physics Letters B, 594(3-4):315–323, 2004.

[11] M Creutz and B Freedman. A statistical approach to quantum mechanics. Annals of
Physics, 132(2):427–462, 1981.

[12] Marise J. E. Westbroek, Peter R. King, Dimitri D. Vvedensky, and Stephan Durr. User’s
guide to monte carlo methods for evaluating path integrals, Dec 2017.

[13] Ronnnie Rodgers and Laura Raes. Monte carlo simulations of harmonic and anharmonic
oscillators in discrete euclidean time, 2014.

49

[14] Aleksandra Slapik and William Serenone. Lattice monte carlo study of the harmonic
oscillator in ..., 2012.

[15] R. Blankenbecler, T. Degrand, and R. L. Sugar. Moment method for eigenvalues and
expectation values. Physical Review D, 21(4):1055–1061, 1980.

[16] Richard P. Feynman and A. R. Hibbs. Quantum mechanics and path integrals R.P.
Feynman A.R. Hibbs. McGraw-Hill, 1965.

[17] James Binney and David Benjamin. Skinner. The physics of quantum mechanics. Oxford
University Press, 2015.

[18] V. Fock. Bemerkung zum virialsatz. Zeitschrift fur Physik, 63(11-12):855–858, 1930.

[19] Christof Gattringer and Christian B. Lang. Quantum Chromodynamics on the Lattice
An Introductory Presentation. Springer Berlin, 2013.

[20] A. Sokal. Monte carlo methods in statistical mechanics: Foundations and new algo-
rithms. Functional Integration NATO ASI Series, pages 131–192, 1997.

[21] Herbert Goldstein, Charles P. Poole, and John Safko. Classical mechanics. Pearson,
2014.

[22] A.D. Kennedy and Brian Pendleton. Cost of the generalised hybrid monte carlo algo-
rithm for free field theory. Nuclear Physics B, 607(3):456–510, 2001.

[23] Alexandros Beskos, Natesh Pillai, Gareth Roberts, Jesus-Maria Sanz-Serna, and An-
drew Stuart. Optimal tuning of the hybrid monte carlo algorithm. Bernoulli,
19(5A):1501–1534, 2013.

[24] Nawaf Bou-Rabee and Jesús Maŕıa Sanz-Serna. Randomized hamiltonian monte carlo.
The Annals of Applied Probability, 27(4):2159–2194, 2017.

[25] Alain Durmus, Eric Moulines, and Eero Saksman. On the convergence of hamiltonian
monte carlo, 2017.

[26] Samuel Livingstone, Michael Betancourt, Simon Byrne, and Mark Girolami. On the
geometric ergodicity of hamiltonian monte carlo, 2016.

[27] Charles J. Geyer. Markov chain monte carlo maximum likelihood. Interface Foundation
of North America, 1991.

[28] David J. Earl and Michael W. Deem. Parallel tempering: Theory, applications, and
new perspectives. Physical Chemistry Chemical Physics, 7(23):3910, 2005.

[29] E Marinari and G Parisi. Simulated tempering: A new monte carlo scheme. Europhysics
Letters (EPL), 19(6):451–458, 1992.

[30] Radford M. Neal. Annealed importance sampling. Statistics and Computing, 11(2):125–
139, 2001.

50

Appendices

Note — Appendices are provided for completeness only and any content included in them
will be disregarded for the purposes of assessment.

A Quantum Virial Theorem

The quantum virial theorem relates the expectation value of the kinetic energy to that of
the potential. For a single particle of mass m can be derived as follows. We begin with a
Hamiltonian of the form:

Ĥ (x̂, p̂) = T̂ (p̂) + V̂ (x̂) (143)
, where

T̂ (p̂) = 1
2mp̂2, (144)

p̂ = −i d
dx

(145)

(in units where ~ = 1) and
V̂ (x̂) = V (x) (146)

so the potential is time independent.

Using the identity: [
Â, B̂Ĉ

]
=
[
Â, B̂

]
Ĉ + B̂

[
Â, Ĉ

]
, (147)

it can be shown that: [
Ĥ, x̂p̂

]
=
[
Ĥ, x̂

]
p̂+ x̂

[
Ĥ, p̂

]
(148)

= 1
2m

[
p̂2, x̂

]
p̂+ x̂ [V (x) , p̂] (149)

= −i p̂
2

m
+ ixV ′ (x) , (150)

so that:
i
[
Ĥ, x̂p̂

]
= 2T̂ (p̂)− xV ′ (x) . (151)

The Heisenberg equation of motion gives for any operator Â (t):

dÂ (t)
dt

= −i
[
Ĥ, Â (t)

]
, (152)

so that equation 151 becomes:

d (x̂p̂)
dt

= 2T̂ (p̂)− xV ′ (x) (153)

51

Then taking the expectation value of both sides of equation 153 and noting that for stationary
states:

〈n| d (x̂p̂)
dt
|n〉 = 0, (154)

we get the virial theorem:
2 〈n| T̂ |n〉 = 〈n| x̂V̂ ′ (x̂) |n〉 (155)

B Derivation of the discrete path integral for quantum
harmonic oscillator

Here we follow the derivation given in [11] for the exact result of the path integral for discrete
theory and a particle of mass m = 1. Since in [11] the derivation has several typographical
mistakes and jumps in the algebra that make it difficult to follow for the reader, we have
chosen to reproduce it with corrections and alterations.

For a quantum harmonic oscillator of mass m = 1, the discrete Euclidean path integral is
given in equation 18 as:

Z =
∫ +∞

−∞

N−1∏
i=0

dxi exp
−N−1∑

j=0
a

[
1
2

(
xj+1 − xj

a

)2
+ 1

2µ
2x2

j

]. (156)

We begin by defining an operator T such that its matrix elements in the Schrödinger picture
are given by:

〈x′| T̂ |x〉 = exp
(
− 1

2a (x′ − x)2 − µ2a

4
(
x2 + x′2

))
. (157)

Then we can use the completeness relation that:

1̂ =
∫ ∞
−∞
|x〉 〈x| . (158)

By inserting N − 1 copies of this relation into the expression (one between each pair of T̂ s):

Tr
(
T̂N

)
, (159)

and using the definition of the matrix elements in equation 157, we recover the path integral
in equation 156, that is:

Z = Tr
(
T̂N

)
. (160)

Here we take the trace, so that for any operator Â in the Schrödinger eigenbasis, the trace
is:

Tr
(
Â
)

=
∫ ∞
−∞

dx 〈x| Â |x〉 , (161)

which is of course basis independent.

52

The next step is to make the ansatz that:

T̂ =
∫ ∞
−∞

dωe
−µ2a

4 x̂2
e−ip̂ωe−1 1

2aω
2
e
−µ2a

4 x̂2
, (162)

then, using that canonical momentum generates translations on position, that is:

e−ip̂∆ |x〉 = |x+ ∆〉 (163)

which can easily be shown by Fourier transforming the position eigenbasis into momentum
space, acting with the momentum operator in the exponential then Fourier transforming
back into position space; we can calculate the matrix element 〈x′|T |x〉 and recover equation
157. We observe that the integral over ω in equation 162 is Gaussian; we may use the
standard result: ∫ +∞

−∞
dxe−αx

2+iβx =
√
π

α
e−

β2
4a , (164)

this result follows from completing the square on x, analytically continuing the integral over
x into the complex plane and creating a rectangular contour in the lower half plane, then
applying residue theory, it is valid provided α ∈ R>0 and β ∈ R. Applying the identity in
equation 164 to equation 162 gives:

T̂ =
√

2πae−
−µ2a

4 x̂2
e−

a
2 p̂

2
e−

µ2a
4 x̂2

. (165)

Notice at this stage in our derivation we could apply the Baker-Campbell-Hausdorff formula
to combine the exponentials; dropping O (a2) would then give the harmonic oscillator Hamil-
tonian exponentiated. Since this system is exactly solvable in the discrete case, we will avoid
doing this and keep all terms.

The canonical commutation relation of quantum mechanics gives:

[x̂, p̂] = i~, (166)

which can be along with the identities that for operators Â and B̂:[
Â, B̂n

]
= nB̂n−1

[
Â, B̂

]
(167)

and [
Ân, B̂

]
= nÂn−1

[
Â, B̂

]
, (168)

if
[
Â,
[
Â, B̂

]]
=
[
B̂,
[
Â, B̂

]]
= 0, to show that:[

x̂, e−
1
2ap̂

2] = −iap̂ (169)

and [
p̂, e−

µ2a
4 x̂2

]
= i

µ2a

2 x̂ (170)

Using identities 169 and 170 we can easily show that:

x̂T̂ = T̂

[(
1 + a2µ2

2

)
x̂− iap̂

]
, (171)

53

and
p̂T̂ = T̂

[(
1 + a2µ2

2

)
p̂+ iaµ2

(
1 + a2µ2

4

)
x̂

]
. (172)

Iterating equations 171 and 172 a second time gives:[
p̂2 + µ2

(
1 + a2µ2

4

)
x̂2, T̂

]
= 0. (173)

Defining a new angular frequency parameter ω by:

ω2 = µ2
(

1 + a2µ2

4

)
, (174)

then from equation 173 we have that T̂ commutes with the simple harmonic oscillator Hamil-
tonian:

Ĥ = 1
2 p̂

2 + 1
2ω

2x̂2. (175)

Since Ĥ and T̂ commute we know T̂ is diagonalized by the eigenstates of Ĥ.

The Hamiltonian is in the form of a harmonic oscillator with angular frequency ω, therefore
we may define the corresponding ladder operators:

â† = 1√
ω

(p̂+ iωx̂) (176)

and
â = 1√

ω
(p̂− iωx̂) (177)

which allows us to write:
Ĥ =

(
â†â+ 1

2

)
ω (178)

The eigenstates of Ĥ satisfy the standard relations:

â |0〉 = 0, (179)

(
â†
)n
|0〉 = |n〉 , (180)

and
〈n|n〉 = n!. (181)

Using the identities of equations 171 and 172 we can show that:

âT̂ = T̂ â

1 + a2µ2

2 − aµ
(

1 + a2µ2

4

) 1
2
 . (182)

Since the eigenstates of Ĥ given as |n〉 diagonalise T̂ , for λi the eigenvalues of T̂ :

T̂ |n〉 = λn |n〉 . (183)

54

We can then use that â |n〉 =
√
n |n− 1〉 and equation 182 to show the ratio:

λn
λn−1

= 1 + a2µ2

2 − aµ
(

1 + a2µ2

4

) 1
2

(184)

=
(1 + a2µ2

4

) 1
2

− 1
2aµ

2

(185)

:= R, (186)

so that
λn = Rλn−1 = R2λn−2 = · · · = Rnλ0, (187)

which gives:

T̂ |n〉 = λn |n〉 (188)
= Rnλ0 |n〉 (189)
= λ0e

n logR |n〉 . (190)

However, the energy eigenstates |n〉 are defined through:

Ĥ |n〉 =
(
n+ 1

2

)
ω |n〉 , (191)

we therefore make the ansatz that for constants C and K:

T̂ = CeKĤ , (192)

which can be shown to be consistent with equation 190 provided we take Kω = logR and
Ce

Kω
2 = λ0 and can conclude that:

T̂ = Ce
Ĥ
ω

logR (193)
= CR

1
ω
Ĥ . (194)

We may then calculate C by first taking the trace of T̂ over the energy eigenbasis |n〉:

Tr
(
T̂
)

=
∑
n

〈n| T̂ |n〉 (195)

= C
∑
n

Rn+ 1
2 (196)

= C
R

1
2

1−R (197)

= C
1
aµ

(198)

where we have used that Ĥ |n〉 = En |n〉 =
(
n+ 1

2

)
ω for the harmonic oscillator in units

where ~ = 1, and in order to compute the sum we have used that |R| < 1. We then take the

55

trace of T̂ over the position eigenbasis according to equation 161, and using equation 157:

Tr
(
T̂
)

=
∫
dx 〈x| T̂ |n〉 (199)

=
∫
dxe−

aµ2
2 x2 (200)

= 1
µ

√
2π
a
, (201)

comparing equation 201 and 198 we conclude C =
√

2πa, and so

T =
√

2πaR Ĥ
ω . (202)

We may now explicitly compute the trace expression for the discrete path integral given in
equation 159 using the result for T̂ in equation 202. We again take the trace over the energy
eigenstates and use the fact that |R| < 1 to compute the resulting sum, this gives:

Z = (2πaR)
N
2

1
1−RN

. (203)

This is the exact expression for the discrete path integral of a quantum harmonic oscillator
of mass m = 1, angular frequency µ on an imaginary time lattice of N − 1 sites with lattice
spacing a.

The correlation functions are given by:

〈xixi+j〉 = 1
Z
Tr

(
x̂T̂ jx̂T̂N−j

)
(204)

= 1

2µ
(
1 + a2µ2

4

) 1
2 (1−Rn)

(
Rj +RN−j

)
. (205)

Taking j = 0, equation 204 becomes:

〈x2〉 = 1
2ω

(
1 +RN

1−RN

)
(206)

= 1

2µ
(
1 + a2µ2

4

) 1
2

(
1 +RN

1−RN

)
(207)

We have shown in above that the discrete theory for the harmonic oscillator leads to a
quantum system with the Hamiltonian given in equation 175. This is the Hamiltonian of a
quantum harmonic oscillator of angular frequency ω rather than µ and hence we employ the
standard result from quantum theory that for a a quantum harmonic oscillator of angular
frequency ω the ground state wave function is given by:

ψ(x) =
(
ω

π

) 1
4

exp
(
−1

2ωx
2
)

(208)

=

µ
(
1 + a2µ2

4

) 1
2

π

1
4

exp
−1

2µ
(

1 + a2µ2

4

) 1
2

x2

 (209)

56

In order order to get the discrete path integral results for a particle of any mass (not just
unity), we note that the action for a particle of mass m:

SM (x) =
N−1∑
i=0

a

[
1
2m

(
xi+1 − xi

a

)2
+ 1

2µ
2x2

i

]
(210)

can be obtained from of the discrete Euclidean action of a particle of mass unity:

SM (x) =
N−1∑
i=0

a

[
1
2

(
xi+1 − xi

a

)2
+ 1

2η
2x2

i

]
. (211)

by making the replacements
x→ x

√
m (212)

and
µ→ µ√

m
. (213)

Making these replacements in the above results gives:

〈xixi+j〉 = 1
2ωm

(
Rj +RN−j

1−RN

)
(214)

〈x2〉 = 1
2mω

(
1 +RN

1−RN

)
(215)

ψ(x) =
(
ω

π

) 1
4

exp
(
−1

2ωx
2
)

(216)

but where now:

R = 1 + a2µ2

2m − aµ√
m

(
1 + a2µ2

4m

) 1
2

(217)

ω = µ√
m

√
1 + a2µ2

4m . (218)

C Simulation Code

In order to save space only the main method has been included from the simulation written
in C++, this gives an idea of the structure of the program and how it works. For the entire
simulation, along with various utilities such as Makefiles please see https://github.com/
FranklandJack/HMC-Oscillator where the interested reader may pull the repository and
run the simulation themselves as well as view the rest of the project files.

1 #inc lude <iostream>
2 #inc lude <f stream>
3 #inc lude <cmath>
4 #inc lude <random>

57

https://github.com/FranklandJack/HMC-Oscillator
https://github.com/FranklandJack/HMC-Oscillator

5 #inc lude <chrono>
6 #inc lude <s t r i ng>
7 #inc lude <vector>
8 #inc lude <algor ithm>
9 #inc lude <boost / program opt ions . hpp>

10 #inc lude ” I p o t e n t i a l . hpp”
11 #inc lude ” HarmonicPotentia l . hpp”
12 #inc lude ” AnharmonicPotential . hpp”
13 #inc lude ” Lat t i c eFunct i ons . hpp”
14 #inc lude ” Histogram . hpp”
15 #inc lude ” ProgressBar . hpp”
16 #inc lude ”Timer . hpp”
17 #inc lude ” makeDirectory . hpp”
18 #inc lude ”getTimeStamp . hpp”
19 #inc lude ”HMCLattice1D . hpp”
20 #inc lude ”DataArray . hpp”
21 #inc lude ”HMCInput . hpp”
22 #inc lude ”HMCOutput . hpp”
23 #inc lude ” metropol isUpdate . hpp”
24
25
26
27 i n t main (i n t argc , const char ∗ argv [])
28 {
29 // Star t Timing .
30 Timer t imer ;
31
32 /∗

∗∗

33 ∗∗ Input
Parameters ∗∗

34 ∗∗∗
∗/

35
36 // L a t t i c e Parameters .
37 i n t l a t t i c e S i z e ;
38 double l a t t i c e S p a c i n g ;
39
40 // O s c i l l a t o r Parameters .
41 double mass ;
42 double muSquared ;
43 double lambda ;
44 double fSquared ;
45

58

46 // HMC Parameters .
47 i n t l fStepCount ;
48 double l f S t e p S i z e ;
49
50 // Other Parameters .
51 i n t conf igCount ;
52 i n t burnPeriod ;
53 i n t mInterval ;
54
55 // Choice o f p o t e n t i a l .
56 HMCInput : : Potent ia lType pot en t i a lCho i c e ;
57
58 // Histogram parameters .
59 i n t numBins ;
60 double histMaxValue ;
61 double histMinValue ;
62
63 // Tempering parameter s q r t (alpha)
64 double temperingParameter ;
65
66 // Cor r e l a t i on range c a l c u l a t o r .
67 i n t co r r e l a t i onRange ;
68
69 // Set up opt i ona l command l i n e argument .
70 boost : : program opt ions : : o p t i o n s d e s c r i p t i o n desc (” Options f o r

hmc o s c i l l a t o r program”) ;
71
72 // Add a l l op t i ona l command l i n e arguments .
73 desc . add opt ions ()
74
75 (” l a t t i c e−s i z e , L” , boost : : program opt ions : : value<int>(&

l a t t i c e S i z e)−>d e f a u l t v a l u e (100) , ”The number o f
l a t t i c e s i t e s ”)

76 (” l a t t i c e−spacing , a” , boost : : program opt ions : : value<double
>(&l a t t i c e S p a c i n g)−>d e f a u l t v a l u e (1 . 0) , ”The spac ing
between l a t t i c e s i t e s ”)

77 (”mass ,m” , boost : : program opt ions : : value<double>(&mass)−>
d e f a u l t v a l u e (1 . 0) , ”The mass o f the o s c i l l a t o r ”)

78 (”mu−squared , u” , boost : : program opt ions : : value<double>(&
muSquared)−>d e f a u l t v a l u e (1) , ”The muˆ2 o f the
o s c i l l a t o r ”)

79 (” lambda , l ” , boost : : program opt ions : : value<double>(&lambda
)−>d e f a u l t v a l u e (0 . 0) , ”The lambda value o f the
o s c i l l a t o r ”)

80 (” f−squared , f ” , boost : : program opt ions : : value<double>(&

59

fSquared)−>d e f a u l t v a l u e (0 . 0) , ”The f ˆ2 value o f the
o s c i l l a t o r ”)

81 (” l f−step−count ,N” , boost : : program opt ions : : value<int>(&
l fStepCount)−>d e f a u l t v a l u e (5) , ”The number o f l e a p f r o g

s t ep s ”)
82 (” l f−step−s i z e , d” , boost : : program opt ions : : value<double>(&

l f S t e p S i z e)−>d e f a u l t v a l u e (0 . 2) , ”The l e a p f r o g s tep
s i z e ”)

83 (” con f i gu ra t i on−count , c ” , boost : : program opt ions : : value<
int>(&conf igCount)−>d e f a u l t v a l u e (100000) , ”The number
o f c o n f i g u r a t i o n s ”)

84 (”burn−per iod , b” , boost : : program opt ions : : value<int>(&
burnPeriod)−>d e f a u l t v a l u e (10000) , ”The burn per iod ”)

85 (”measurement−i n t e r v a l , i ” , boost : : program opt ions : : value<
int>(&mInterval)−>d e f a u l t v a l u e (4) , ”The number o f
s t ep s between measurements ”)

86 (”number−bins ,B” , boost : : program opt ions : : value<int>(&
numBins)−>d e f a u l t v a l u e (100) , ”The number o f b ins in
the p o s i t i o n histogram ”)

87 (” histogram−max−value ,R” , boost : : program opt ions : : value<
double>(&histMaxValue)−>d e f a u l t v a l u e (4 . 0) , ”Maximum
value in histogram range ”)

88 (” histogram−min−value , r ” , boost : : program opt ions : : value<
double>(&histMinValue)−>d e f a u l t v a l u e (−4.0) , ”Minimum
value in histogram range ”)

89 (” tempering−parameter ,T” , boost : : program opt ions : : value<
double>(&temperingParameter)−>d e f a u l t v a l u e (1 . 0) , ” s q r t
(alpha) that i s the tempering parameter ”)

90 (” c o r r e l a t i o n−range ” , boost : : program opt ions : : value<int>(&
cor re l a t i onRange)−>d e f a u l t v a l u e (10) , ” range to
c a l c u l a t e the c o r r e l a t i o n func t i on f o r . ”)

91 (” anharmonic ” , ” use a l t e r n a t i v e p o t e n t i a l ”)
92 (” help , h” , ” produce help message ”) ;
93
94 // Make arguments a v a i l a b l e to program
95 boost : : program opt ions : : var iab les map vm;
96 boost : : program opt ions : : s t o r e (boost : : program opt ions : :

parse command l ine (argc , argv , desc) , vm) ;
97 boost : : program opt ions : : n o t i f y (vm) ;
98
99 // I f the user asks f o r he lp d i sp l ay i t then e x i t .

100 i f (vm. count (” he lp ”))
101 {
102 std : : cout << desc << ”\n” ;
103 re turn 1 ;

60

104 }
105
106 // I f the user s p e c i f i e s a l t e r n a t e p o t e n t i a l need to l e t the

program know .
107 i f (vm. count (” anharmonic ”))
108 {
109 po t en t i a lCho i c e = HMCInput : : Potentia l Anharmonic ;
110 }
111
112
113 e l s e
114 {
115 po t en t i a lCho i c e = HMCInput : : Potent ia l Harmonic ;
116 }
117
118 // Construct an input ob j e c t and pr in t the va lues to the

command l i n e .
119 HMCInput inputParameters
120 {
121 l a t t i c e S i z e ,
122 l a t t i c e S p a c i n g ,
123 mass ,
124 muSquared ,
125 lambda ,
126 fSquared ,
127 l fStepCount ,
128 l f S t e p S i z e ,
129 configCount ,
130 burnPeriod ,
131 mInterval ,
132 potent ia lCho i ce ,
133 numBins ,
134 histMaxValue ,
135 histMinValue ,
136 temperingParameter ,
137 cor r e l a t i onRange
138 } ;
139
140 std : : cout << inputParameters << ’\n ’ ;
141 i n t outputColumnWidth = 10 ;
142
143 /∗

∗∗

144 ∗∗ Output Set

61

Up ∗∗∗
145 ∗∗∗

∗/
146
147
148 // Create s t r i n g which ho lds unique time / date stamp .
149 std : : s t r i n g outputName (makeDirectory (getTimeStamp ())) ;
150
151 // Create output f i l e to hold the input parameters .
152 std : : o f s t ream inputParametersOutput (outputName + ”/ input . txt ”)

;
153
154 // Create output f i l e to hold numerica l va lue s c a l c u l a t e d

during the s imu la t i on .
155 std : : o f s t ream resu l t sOutput (outputName + ”/ r e s u l t s . txt ”) ;
156
157 // Create output f i l e to hold the wave func t i on .
158 std : : o f s t ream wavefunctionOutput (outputName+”/ wavefunct ion . dat

”) ;
159
160 // Create output f i l e to hold the c o r r e l a t i o n func t i on data .
161 std : : o f s t ream cor re l a t i onOutput (outputName+”/ c o r r e l a t i o n . dat ”)

;
162
163 // Create output f i l e to hold the f i n a l c o n f i g u r a t i o n so i t

can be re sused in fu tu r e s imu la t i on s .
164 std : : o f s t ream f ina lConf igOutput (outputName+”/

f i n a l C o n f i g u r a t i o n . dat ”) ;
165
166 // Create output f i l e f o r the mean p o s i t i o n on each

c o n f i g u r a t i o n .
167 std : : o f s t ream pos i t ionOutput (outputName+”/ p o s i t i o n . dat ”) ;
168
169 // Create output f i l e f o r the mean p o s i t i o n squared on each

c o n f i g u r a t i o n .
170 std : : o f s t ream posit ionSquaredOutput (outputName+”/

pos i t i onSquared . dat ”) ;
171
172 // Create output f i l e f o r the mean energy gs on each

c o n f i g u r a t i o n .
173 std : : o f s t ream gsEnergyOutput (outputName+”/gsEnergy . dat ”) ;
174
175 // Create output f i l e f o r the a u t o c o r r e a l t i o n in p o s i t i o n .
176 std : : o f s t ream pos i t ionAutoCorre lat ionOutput (outputName+”/

a u t o c o r r e l a t i o n P o s i t i o n . dat ”) ;

62

177
178 // Create output f i l e f o r the a u t o c o r r e l a t i o n in p o s i t i o n

squared .
179 std : : o f s t ream pos i t ionSquaredAutoCorre lat ionOutput (outputName+

”/ auto co r r e l a t i onPos i t i onSqua r ed . dat ”) ;
180
181 // Create output f i l e f o r the a u t o c o r r e l a t i o n in p o s i t i o n

four th .
182 std : : o f s t ream pos i t ionFourthAutoCorre lat ionOutput (outputName+”

/ au t o co r r e l a t i on Pos i t i onFou r th . dat ”) ;
183
184 // Create output f i l e f o r the Hamiltonian on the f i r s t

l e a p f r o g update at equ i l i b r i um so we can see i t s evo lu t i on .
185 std : : o f s t ream hamti lonianEvolut ionOutput (outputName+”/

hami l ton ianEvolut ion . dat ”) ;
186
187 // Create output f i l e f o r the c o n f i g u r a t i o n on the l eap f r o g

update so we can see what happens to i t .
188 std : : o f s t ream conf igurat ionEvo lut ionOutput (outputName+”/

con f i gu ra t i onEvo lu t i on . dat ”) ;
189
190
191
192 // Create p o t e n t i a l s f o r each type .
193 HarmonicPotentia l harmonicPotent ia l (muSquared , lambda) ;
194 AnharmonicPotential anharmonicPotent ia l (lambda , fSquared) ;
195 I p o t e n t i a l ∗ p o t e n t i a l = n u l l p t r ;
196
197 switch (po t en t i a lCho i c e)
198 {
199 case HMCInput : : Potent ia l Harmonic :
200 p o t e n t i a l = &harmonicPotent ia l ;
201 break ;
202
203 case HMCInput : : Potentia l Anharmonic :
204 p o t e n t i a l = &anharmonicPotent ia l ;
205 break ;
206
207 d e f a u l t :
208 std : : cout << ”No p o t e n t i a l s e l e c t e d , e x i t i n g program” ;
209 re turn 1 ;
210 }
211
212 /∗

∗∗

63

213 ∗∗∗ Set up
Measurements ∗∗

214 ∗∗∗
∗/

215
216 i n t mCount = conf igCount / mInterval ;
217
218 i n t acceptance = 0 ;
219
220 DataArray pos i t ionData ;
221 pos i t ionData . r e s e r v e (mCount) ;
222
223 DataArray pos i t ionSquaredData ;
224 pos i t ionSquaredData . r e s e r v e (mCount) ;
225
226 DataArray pos i t ionFourthData ;
227 pos i t ionFourthData . r e s e r v e (mCount) ;
228
229 DataArray act ionData ;
230 act ionData . r e s e r v e (mCount) ;
231
232 DataArray keData ;
233 keData . r e s e r v e (mCount) ;
234
235 DataArray dhData ;
236 dhData . r e s e r v e (mCount) ;
237
238 DataArray expdhData ;
239 expdhData . r e s e r v e (mCount) ;
240
241 DataArray gsEnergyData ;
242 gsEnergyData . r e s e r v e (mCount) ;
243
244
245
246
247 std : : vector<double> c o r r e l a t i o n (corre la t ionRange , 0) ;
248 std : : vector<double> co r r e l a t i onSqua r ed (corre lat ionRange , 0) ;
249
250
251 // Set up ar rays to hold the wavefunct ion c a l c u l a t e d on each

measured c o n f i g u r a t i o n .
252 std : : vector<double> wavefunct ion (numBins , 0 . 0) ;
253 std : : vector<double> wavefunctionSquared (numBins , 0 . 0) ;

64

254 std : : vector<double> wavefunct ionError (numBins , 0 . 0) ;
255
256
257
258
259 /∗

∗∗

260 ∗∗∗ Prepare PRN
genera t i on ∗∗∗

261 ∗∗∗
∗/

262
263 unsigned i n t seed = s t a t i c c a s t <unsigned int >(std : : chrono : :

sy s t em c lock : : now () . t ime s in c e epoch () . count ()) ;
264 // Test seed = 1 .
265 std : : de fau l t random eng ine genera to r (1) ;
266
267
268
269 /∗

∗∗

270 ∗∗∗ Prepare
L a t t i c e ∗∗

271 ∗∗∗
∗/

272
273 // Create a l a t t i c e that can be updated .
274 HMCLattice1D l a t t i c e (l a t t i c e S i z e , l a t t i c e S p a c i n g , mass ,

p o t e n t i a l) ;
275
276 // I n i t i a l i s e the l a t t i c e with uni formly d i s t r i b u t e d p o s i t i o n

coo rd ina t e s between −1 and +1.
277 l a t t i c e . i n i t i a l i s e (genera to r) ;
278
279 // TEST TO SEE WHAT HAPPENS IF WE INITIALISE LATTICE IN ONE

MINIMA.
280 /∗
281 i f (vm. count (” anharmonic ”))
282 {
283 f o r (i n t i = 0 ; i < l a t t i c e . g e t S i z e () ; ++i)
284 {
285 l a t t i c e [i] = −s q r t (fSquared) ;
286 }

65

287 }
288 ∗/
289
290 // Create a l a t t i c e to r e p r e s en t the cur rent s t a t e o f the

system
291 HMCLattice1D c u r r e n t L a t t i c e = l a t t i c e ;
292
293 /∗

∗∗

294 ∗∗∗ Do HMC
∗∗

295 ∗∗∗
∗/

296
297 // Progres s bar to inform use how f a r through s imu la t i on they

are .
298
299 ProgressBar progressBar (conf igCount+burnPeriod , 0 . 5 , 2 , 0 . 0) ;
300
301 // Tempering w i l l only begin once we are in equ i l ib r ium , so we

need a second tempering parameter which w i l l change
302 // once we reach equ i l i b r ium .
303 double tempering = 1 ;
304 f o r (i n t c o n f i g = 0 ; c o n f i g < conf igCount+burnPeriod ; ++c o n f i g)
305 {
306 std : : cout << progressBar ;
307 progressBar . increment () ;
308
309 // I f we are in equ i l i b r i um update the tempering parameter

.
310 i f (con f i g>=burnPeriod)
311 {
312 tempering = temperingParameter ;
313 }
314
315 // Randomise the Momenta .
316 l a t t i c e . randomiseMomenta (genera to r) ;
317
318 // Ca lcu la te the Hamiltonian .
319 double hami l ton ianBefore = l a t t i c e . hami l tonian () ;
320
321 // Save o r i g i n a l l a t t i c e .
322 c u r r e n t L a t t i c e = l a t t i c e ;
323

66

324 i f (c o n f i g == burnPeriod)
325 {
326 // I f we are on the f i r s t equ i l i b r i um update then

p r i n t the Hamiltonian along the t r a j e c t o r y .
327 l a t t i c e . leapFrog (l fStepCount , l f S t e p S i z e , tempering ,

hamti lonianEvolutionOutput ,
con f igurat ionEvo lut ionOutput) ;

328 }
329 e l s e
330 {
331 // Do a l e a p f r o g update on the l a t t i c e .
332 l a t t i c e . leapFrog (l fStepCount , l f S t e p S i z e , tempering) ;
333 }
334
335 // Ca lcu la te Hamiltonian a f t e r .
336 double hami l ton ianAfter = l a t t i c e . hami l tonian () ;
337
338 // Do a Metropo l i s update and i f i t f a i l s make sure we

r e s t o r e the o r i g i n a l l a t t i c e .
339 i f (! (metropol isUpdate (hami l tonianBefore , hami l ton ianAfter ,

genera to r)))
340 {
341 l a t t i c e = c u r r e n t L a t t i c e ;
342
343 }
344 // Otherwise i f we are out o f the burn per iod record the

acceptance .
345 e l s e i f (c o n f i g >= burnPeriod)
346 {
347 ++acceptance ;
348 }
349 // Measurements are made at the i n t e r v a l s p e c i f i e d by the

user once we have exceeded the burn per iod .
350 i f (0 == c o n f i g%mInterval && c o n f i g >= burnPeriod)
351 {
352 // Numerical va lue s .
353 pos i t ionData . push back (l a t t i c e . meanX()) ;
354 pos i t ionSquaredData . push back (l a t t i c e . meanXSquared ()) ;
355 pos i t ionFourthData . push back (l a t t i c e . meanXFourth ()) ;
356 act ionData . push back (l a t t i c e . a c t i on () / l a t t i c e S i z e) ;
357 keData . push back (l a t t i c e . k ine t i cEnergy () / l a t t i c e S i z e) ;
358 dhData . push back (hami l ton ianAfter − hami l ton ianBefore)

;
359 expdhData . push back (exp (hami l ton ianBefore −

hami l ton ianAfter)) ;

67

360
361 // Wave Function .
362
363 // Create histogram to record the wavefunct ion f o r

t h i s c o n f i g u r a t i o n .
364 Histogram pos i t ionHis togram (histMinValue , histMaxValue

, numBins) ;
365
366 f o r (i n t index = 0 ; index < l a t t i c e S i z e ; ++index)
367 {
368 pos i t ionHis togram (l a t t i c e [index]) ;
369 }
370
371 // Normalise the wavefunct ion and s t o r e i t in the

vec to r o f wavefunct ions .
372 pos i t ionHis togram . normal i se () ;
373
374 f o r (i n t i = 0 ; i < wavefunct ion . s i z e () ; ++i)
375 {
376 double p robab i l ty = pos i t ionHis togram . count (i) ;
377 wavefunct ion [i] += probab i l ty /mCount ;
378 wavefunctionSquared [i] += probab i l ty ∗ probab i l ty /

mCount ;
379 }
380
381 // Cor r e l a t i on func t i on .
382
383 // Store f i r s t n va lue s o f the c o r r e l a t i o n func t i on on

the l a t t i c e .
384 f o r (i n t i = 0 ; i < c o r r e l a t i o n . s i z e () ; ++i)
385 {
386 double c o r r e l a t i o n V a l u e = l a t t i c e . c o r r e l a t i o n (i) ;
387 c o r r e l a t i o n [i] += c o r r e l a t i o n V a l u e /mCount ;
388 co r r e l a t i onSqua r ed [i] += c o r r e l a t i o n V a l u e ∗

c o r r e l a t i o n V a l u e /mCount ;
389
390 }
391
392 // Ground s t a t e energy .
393 gsEnergyData . push back ((∗ p o t e n t i a l) . groundStateEnergy (

l a t t i c e . meanXSquared () , l a t t i c e . meanXFourth ())) ;
394
395 }
396
397 }

68

398 progressBar . increment () ;
399 std : : cout << progressBar ;
400 std : : cout << ”\nDone ! . . . \ n” << std : : endl ;
401
402
403
404 /∗

∗∗

405 ∗∗∗ Calcu la te Observables
∗∗

406 ∗∗∗
∗/

407
408 double acceptanceRate = s t a t i c c a s t <double>(acceptance) /(

conf igCount) ;
409
410 // Ca lcu la te var iance and standard e r r o r us ing the normal

formulas .
411 double var ianceAcceptance = (acceptanceRate − acceptanceRate

∗ acceptanceRate) ∗ mCount/(mCount−1) ;
412 double sdAcceptance = s q r t (var ianceAcceptance) / s q r t (

mCount) ;
413
414 f o r (i n t i = 0 ; i < wavefunct ion . s i z e () ; ++i)
415 {
416 double var ianceWavefunct ion = (wavefunctionSquared [i] −

wavefunct ion [i] ∗ wavefunct ion [i]) ∗ mCount/(mCount−1) ;
417 wavefunct ionError [i] = s q r t (var ianceWavefunct ion) /

s q r t (mCount) ;
418 }
419
420 std : : vector<double> c o r r e l a t i o n E r r o r (c o r r e l a t i o n . s i z e () , 0) ;
421 f o r (i n t i = 1 ; i < c o r r e l a t i o n E r r o r . s i z e () ;++ i)
422 {
423 double v a r i a n c e C o r r e l a t i o n = (co r r e l a t i onSqua r ed [i] −

c o r r e l a t i o n [i]∗ c o r r e l a t i o n [i]) ∗ mCount/(mCount−1) ;
424 c o r r e l a t i o n E r r o r [i] = s q r t (v a r i a n c e C o r r e l a t i o n) /

s q r t (mCount) ;
425 }
426
427
428 double p o s i t i o n = pos i t ionData . mean () ;
429 double p o s i t i o n E r r o r = pos i t ionData . e r r o r () ;
430 double pos it ionIAC = pos i t ionData .

69

i n t eg ratedAutocor re la t i onTime (10) ;
431
432 double pos i t i onSquared = pos it ionSquaredData . mean () ;
433 double pos i t i onSquaredError = pos it ionSquaredData . e r r o r () ;
434 double posit ionSquaredIAC = posit ionSquaredData .

in tegratedAutocor re la t i onTime (10) ;
435
436 double pos i t i onFourth = pos it ionFourthData . mean () ;
437 double pos i t i onFourthError = pos it ionFourthData . e r r o r () ;
438 double posit ionFourthIAC = posit ionFourthData .

in tegratedAutocor re la t i onTime (10) ;
439
440 double k ine t i cEnergy = keData . mean () ;
441 double k ine t i cEnergyError = keData . e r r o r () ;
442
443 double ac t i on = actionData . mean () ;
444 double ac t i onEr ro r = actionData . e r r o r () ;
445
446 double dh = dhData . mean () ;
447 double dhError = dhData . e r r o r () ;
448
449 double expdh = expdhData . mean () ;
450 double expdhError = expdhData . e r r o r () ;
451
452 double gsEnergy = gsEnergyData . mean () ;
453 double gsEnergyError = gsEnergyData . e r r o r () ;
454
455
456 /∗

∗∗∗

457 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Output to command l i n e
∗∗

458 ∗∗∗
∗/

459 // Construct an ob j e c t to hold the r e s u l t s .
460 HMCOutput r e s u l t s
461 {
462 acceptanceRate ∗100 ,
463 sdAcceptance ∗100 ,
464 act ion ,
465 act ionError ,
466 k inet icEnergy ,
467 k inet i cEnergyError ,
468 dh ,

70

469 dhError ,
470 expdh ,
471 expdhError ,
472 pos i t i on ,
473 pos i t i onEr ro r ,
474 posit ionIAC ,
475 pos i t ionSquared ,
476 pos i t ionSquaredError ,
477 posit ionSquaredIAC ,
478 pos i t ionFourth ,
479 pos i t ionFourthError ,
480 positionFourthIAC ,
481 gsEnergy ,
482 gsEnergyError
483 } ;
484
485 // Output the r e s u l t s to the command l i n e
486
487 std : : cout << r e s u l t s << ’\n ’ ;
488
489 /∗

∗∗∗

490 ∗∗∗ F i l e Output
∗∗∗

491 ∗∗
∗/

492
493
494 double h i s tSpac ing = (histMaxValue − histMinValue) / numBins ;
495 f o r (i n t i = 0 ; i < wavefunct ion . s i z e () ;++ i)
496 {
497 wavefunctionOutput << (histMinValue + h i s tSpac ing /2) + i ∗

h i s tSpac ing << ’ ’ << wavefunct ion [i] << ’ ’ <<
wavefunct ionError [i] << ’\n ’ ;

498 }
499
500 f o r (i n t i = 0 ; i < c o r r e l a t i o n . s i z e () ; ++i)
501 {
502 cor r e l a t i onOutput << i << ” ” << c o r r e l a t i o n [i] << ’ ’ <<

c o r r e l a t i o n E r r o r [i] << ’\n ’ ;
503 }
504
505 // Ca lcua l t e the a u t o c o r r e l a t i o n in the measurements .
506 std : : vector<double> pos i t i onAutoCor r e l a t i on = pos i t ionData .

71

autoCor r e l a t i on (0 , 100) ;
507 std : : vector<double> pos i t i onSquaredAutoCorre la t ion =

pos it ionSquaredData . autoCor r e l a t i on (0 ,100) ;
508 std : : vector<double> pos i t i onFourthAutoCorre la t ion =

pos it ionFourthData . autoCor r e l a t i on (0 ,100) ;
509
510 f o r (i n t i = 0 ; i < pos i t i onAutoCor r e l a t i on . s i z e () ; ++i)
511 {
512 pos i t ionAutoCorre lat ionOutput << i << ’ ’ <<

pos i t i onAutoCor r e l a t i on [i] << ’\n ’ ;
513 pos i t ionSquaredAutoCorre lat ionOutput << i << ’ ’ <<

pos i t i onSquaredAutoCorre la t ion [i] << ’\n ’ ;
514 pos i t ionFourthAutoCorre lat ionOutput << i << ’ ’ <<

pos i t i onFourthAutoCorre la t ion [i] << ’\n ’ ;
515
516
517 }
518
519 // Output the input parameters to t h e i r f i l e .
520 inputParametersOutput << inputParameters ;
521
522 // Output the numerica l r e s u l t s to the f i l e .
523 resu l t sOutput << r e s u l t s ;
524
525 // Output f i n a l c o n f i g u r a t i o n .
526 f ina lConf igOutput << l a t t i c e ;
527
528 // Output p o s i t i o n data .
529 pos i t ionOutput << pos i t ionData ;
530
531 // Output p o s i t i o n squared data .
532 posit ionSquaredOutput << pos it ionSquaredData ;
533
534 // Output gs energy data .
535 gsEnergyOutput << gsEnergyData ;
536
537
538 /∗

∗∗∗

539 ∗∗∗ End Program
∗∗∗

540 ∗∗
∗/

541 std : : cout << ” Simulat ion Complete ! Resu l t s have been outputed

72

to the d i r e c t o r y ” << outputName << ’\n ’ ;
542 std : : cout << ”Time take to execute (s) : ” << t imer . e l apsed ()

<< std : : endl << std : : endl ;
543
544
545
546 re turn 0 ;
547 }

73

	Introduction
	Background
	Quantum Mechanics
	The Path Integral
	Connecting to Statistical Physics

	Methods
	Monte Carlo Methods
	Hybrid Monte Carlo
	Hamiltonian Dynamics
	Sampling and the Hamiltonian
	Steps of the HMC Algorithm

	Data Analysis

	Results and Discussion
	Quantum Oscillators
	Quantum Harmonic Oscillator
	Quantum Anharmonic Oscillator
	Isolated Modes

	Accelerated Dynamics (Tempering)
	Tempering in HMC
	Volume Preservation Under Tempering Dynamics
	Tempered Simulation Results
	Suggestions for Future Tempering Investigations

	Conclusion
	Appendices
	Quantum Virial Theorem
	Derivation of the discrete path integral for quantum harmonic oscillator
	Simulation Code

